ADT8940A1 4-axis servo/ stepping motion control card

ADT-8940A1
4-Axis Motion Control Card

User Manual
[image: image31.png]Pucon
PU-/eH-

DR-/cCH-

Adtech (Shenzhen) CNC Technology Co., Ltd
Add: F5, Block 36, Majialong Industrial park, Nanshan District, ShenZhen

Postal Code: 518052 Tel: 0755-26722719 (20 lines) Fax: 0755-26722718
Copyrights

This User Manual contains proprietary information held by Adtech (Shenzhen) CNC Technology Co., Ltd (“Adtech” hereafter); stimulation, copy, photocopy or translation into other languages to this User Manual shall be disallowed unless otherwise approved by Adtech.
Meanwhile, Adtech doesn’t provide any kind of warranty, expression on standing or implication. Adtech and its staffs are not liable for any direct/ indirect information disclosure, economic loss or progress termination caused by this User Manual and the product information inside.
All the contents in this User Manual may be changed without any notice.

Trademark

All the product names introduced in this User Manual are only for identification purpose, while they may belong to other various trademarks or copyrights, such as:
· INTEL and PENTIUM are trademarks of INTEL Company;

· WINDOWS and MS-DOS trademarks of MICROSOFT Company;

· ADT-8940 is the trademark of Adtech;

· Other trademarks belong to their corresponding registered companies.

All copyrights reserved by Adtech (Shenzhen) CNC Technology Co., Ltd
Version Upgrading Record

	Version
	Revised in
	Descriptions

	V4.0
	2009/09/08
	The fourth version

Remark: The three digits in the version number respectively mean:
[image: image32.png]Pus/ou o # 7
. x{
Puoi- — -
ORe/cot A :
€19
B
i)&%m%ﬁlﬁ
[& %—M—

DR+/CCH+ c"’
s ¢ e

ﬂﬁﬁ GTkiel

[image: image33.png]T 77 INCOMn(n=1-4)

VEXT (12-247)
i VEXT AL
)% ! +V ¥ ?
d 3 [SENN. ned
' GND | EXT_GNDSh
e ! INn(ae0-31) T RS
S !
(e =x '
U % o o—4—OEXT_GID
_______ 4 K2
KINEIETT ﬁ%@&

KZHE BN

B

[image: image34.png]S A s

Bt g e
w7 ML | Lo wE
LR 75 wwr | L
R 75 Ll towmr
S Ll | TETEE

Hardware version number Major version number Minor version number

Contents

6Chapter 1 General information

6
INTRODUCTION

6(MAIN FUNCTIONS

7(
APPLICATION SCOPE

8Chapter 2 Hardware installation

8(
PARTS

8(
INSTALLATION

9Chapter 3 Electrical connection

9(
J1 line

14(
J2 line

16(CONNECTION FOR PULSE/ DIRECTION INPUT SIGNAL

17(CONNECTION FOR ENCODER INPUT SIGNAL

17(CONNECTION FOR DIGITAL INPUT

20(CONNECTION FOR DIGITALOUTPUT

23Chapter 4 Software installation

23(DRIVE INSTALLATION IN WIN2000

26(DRIVE INSTALLATION UNDER WINXP

29Chapter 5 Functions

29(
Pulse output method

29(
Hardware Limit signal

29(Linear interpolation

30
Quantitative driving

31
Velocity curve

33
Position lock

33
External signal driving

33Chapter 6 List of ADT8940A1 basic library functions

37Chapter 7 Details of ADT8940A1 basic library functions

37(CATEGORY OF BASIC PARAMETER SETTING

40(
CATEGORY OF DRIVE STATUS CHECK

40(
CATEGORY OF MOVEMENT PARAMETER SETTING

42(
CATEGORY OF MOTION PARAMETER CHECK

43(
CATEGORY OF DRIVE

45(
CATEGORY OF SWITCH AMOUNT INPUT/ OUTPUT

46(
CATEGORY OF COMPOSITE DRIVING

50(
CATEGORY OF EXTERNAL SIGNAL DRIVING

50
CATEGORY OF LOCK POSITION

51(
CATEGORY OF HARDWARE CACHE

54Chapter 8 Guide to motion control function library

57Chapter 9 Briefing on motion control development

57(
CARD INITIALIZATION

57(
SPEED SETTING

58(
STOP0, STOP1 signal

59Chapter 10 Programming samples in motion control development

59(VB PROGRAMMING SAMPLES

82(VC PROGRAMMING SAMPLES

97Chapter 11 Normal failures and solutions

98MOTOR SERVICE FAILURE

100(ABNORMAL SWITCH AMOUNT INPUT

102Appendix A Typical wiring for motor driver

105Appendix B Introduction on applicable library

Chapter 1 General information
· INTRODUCTION
ADT8940A1 Card is a kind of high-performance 4-axis servo/ stepping control card based on PCI bus and supporting Plug & Play, while one system can support up to 16 control cards and control up to 64 lines of servo/ stepping motors.
Pulse output method may be single pulse (pulse + direction) or double pulse (pulse+pulse), with the maximum pulse frequency of 2MHz. Advanced technologies are applied to ensure the frequency tolerance is less than 0.1% despite of high output frequency.

It supports 2-4 axis of linear interpolation, with the maximum interpolation speed of 1MHz.
External signal (handwheel or general input signal) driving can be either constant or continuous driving
With position lock, you can lock the value of logical counter or actual position counter.

Speed can be set as contstant speed or trapezoidal acceleration/ deceleration.

Hardware caching features with a large-capacity.
I / O response time of about 500μs.
Position management is realized through two up/ down counters, one used to manage logical positions of internally driven pulse output, and the other used to receive external input, with encoder or grating ruler inputted through A/ B phase as the input signal.

Counters are up to 32 digits, specially, the range is 2,147,483,648~+2,147,483,647.

The system also provides DOS/WINDOWS95/98/NT/2000/XP/WINCE development libraries and enable software development in VC++, VB, BC++, LabVIEW, Delphi, and C++Builder.
(MAIN FUNCTIONS
· 32-digit PCI bus, enabling Plug & Play
· All the input and output are under photoelectric coupler isolation, with strong resistance to disturbance.
· 4-axis servo/ stepping motor control, with every axis able to move independently without mutual effects.
· Frequency tolerance for pulse output is less than 0.1%.
· The maximum pulse output frequency is 2MHz.
· Pulse output may be single (pulse+ direction) or double(pulse+ pulse)
· All the 4 axes have position feedback input in 32-digit counting, giving the maximum counting range of -2,147,483,648~ +2,147,483,647.
· Trapezoidal acceleration/ deceleration
· 2-4 axis linear interpolation.
· Maximum interpolation speed: 1MHz.
· I/O response time of about 500μs.
· Handwheel and external signal operation, position lock, large-capacity of hardware caching.
· Real-time reading of logical, real and driving speeds during movement
· 40-line digital input (each axis of position feedback may be used as 2 input points, altogether 8).
· Two limit input for each axis may be set as Nil and work as general input
· Up to 16 control cards supported within one system.
· DOS/WINDOWS95/98/NT/2000/XP/WIN CE supported.
(
APPLICATION SCOPE

(Multi-axis engraving system

(Robot system

(Coordinate measurement system

(PC-based CNC system
Chapter 2 Hardware installation
(
PARTS

1. ADT-8940A1 User Manual (this manual)

2. ADT-8940A1 4-axis PCI bus high-performance motion control card

3. ADT-8940A1 user CD

4. ADT-DB37 1 pc
5. ADT-D37GG 1 pc
6. ADT-9137 37-pin signal connecting plate, 1 pcs
7. D62GG
8. ADT-9162 connecting plate, 1 pcs
9. ADT-9112 connecting plate, 1 pcs(Optional configuration, 62-pin terminal block)
(
INSTALLATION

1. Switch off the computer power supply (for ATX supply case, switch off the overall power)

2. Open the back cover of the computer case

3. Insert ADT-8940 into an available PCI slot

4. Ensure the golden finger of ADT-8940 has been fully inserted the slot and then fasten card with screws
5. Connect one end of the D62GG cable to J1 interface of motion card and the other end to terminal block ADT_9162.
6. Check whether it is necessary to install J2 interface cable. To install J2 if necessary:(1) Connect one end of ADT-DB37 to J2 of motion card and the other end to P2 of ADT-DB37;(2) Fix the ADT-DB37 on the rear side of the enclosure;(3) Connect ADT-D37GG to P2 of the transition board and ADT-D37GG.
Chapter 3 Electrical connection
[image: image1.jpg]m2gs
fr=my
: E i =
i
HaT-siiz e
Aree

r-e13t

There are two input/ output interfaces inside an ADT8940A1 card, whereby J1 is for 62-pin socket and J2 is for 25-pin.

J1 is the signal cable for pulse output of X, Y, Z and A axis, switch amount input and switch amount output (OUT0-OUT11); J2 is the signal cable for encoder input and switch amount input of X, Y, Z and A axis; switch amount input and switch amount output (OUT12-OUT15).

Signals are defined as follows:
(
J1 line
[image: image2.png]

	Line number
	Signal
	Introduction

	1
	PCOM1
	Used for single-port input, not available for external power supply

	2
	XPU+/CW+
	X pulse signal +

	3
	XPU-/CW-
	X pulse signal -

	4
	XDR+/CCW+
	X direction signal +

	5
	XDR-/CCW-
	X direction signal -

	6
	YPU+/CW+
	Y pulse signal +

	7
	YPU-/CW-
	Y pulse signal -

	8
	YDR+/CCW+
	Y direction signal +

	9
	YDR-/CCW-
	Y direction signal -

	10
	PCOM2
	Used for single-port input, not available for external power supply

	11
	ZPU+/CW+
	Z pulse signal +

	12
	ZPU-/CW-
	Z pulse signal -

	13
	ZDR+/CCW+
	Z direction signal +

	14
	ZDR-/CCW-
	Z direction signal -

	15
	APU+/CW+
	A pulse signal +

	16
	APU-/CW-
	A pulse signal -

	17
	ADR+/CCW+
	A direction signal +

	18
	ADR-/CCW-
	A direction signal -

	19
	INCOM1
	Common for pin20-27 pin (Input points for switch amount)

	20
	IN0(XLMT-)
	Limit- signal for X,able to work as general input signal

	21
	IN1(XLMT+)
	Limit+ signal for X, able to work as general input signal

	22
	 IN2 (XSTOP0)
	STOP0- signal for X,able to work as general input signal

	23
	 IN3 (XSTOP1)
	STOP1- signal for X, able to work as general input signal

	24
	IN4(XEXP+)
	Positive direction of the Manually Signal for X,able to work as general input signal

	25
	IN5(XEXP-)
	negative direction of the Manually Signal for X, able to work as general input signal

	26
	IN6 (YLMT-)
	Limit- signal for Y, able to work as general input signal

	27
	IN7 (YLMT+)
	Limi+ signal for Y, able to work as general input signal

	28
	INCOM2
	Common for pin29-36 (Input points for switch amount)

	29
	IN8 (YSTOP0)
	STOP0- signal for Y,able to work as general input signal

	30
	IN9 (YSTOP1)
	STOP1- signal for Y, able to work as general input signal

	31
	IN10(YEXP+)
	Positive direction of the Manually Signal for Y,able to work as general input signal

	32
	IN11(YEXP-)
	negative direction of the Manually Signal for Y able to work as general input signal

	33
	IN12(ZLMT-)
	Limit_signal for Z,able to work as general input signal

	34
	IN13(ZLMT+)
	Limit+ signal for Z, able to work as general input signal

	35
	IN14(ZSTOP0)
	STOP0- signal for Z,able to work as general input signal

	36
	IN15(ZSTOP1)
	STOP1- signal for Z, able to work as general input signal

	37
	INCOM3
	Common for pin38-45 (Input points for switch amount)

	38
	 IN16(ZEXP+)
	Positive direction of the Manually Signal for Z,able to work as general input signal

	39
	IN17(ZEXP-)
	negative direction of the Manually Signal for Z,able to work as general input signal

	40
	IN18(ALMT-)
	Limit- signal for A,able to work as general input signal

	41
	 IN19(ALMT+)
	Limit+ signal for A, able to work as general input signal

	42
	IN20(ASTOP0)
	STOP0- signal for A,able to work as general input signal

	43
	IN21(ASTOP1)
	STOP1- signal for A, able to work as general input signal

	44
	IN22(AEXP+)
	Positive direction of the Manually Signal for A,able to work as general input signal

	45
	IN23(AEXP-)
	negative direction of the Manually Signal for A, able to work as general input signal

	46
	OUT0
	Output points for switch amount

	47
	OUT1
	Output points for switch amount

	48
	OUT2
	Output points for switch amount

	49
	OUT3
	Output points for switch amount

	50
	OUTCOM1
	General negative common for Output0-3 (Output points for switch amount)

	51
	OUT4
	Output points for switch amount

	52
	OUT5
	Output points for switch amount

	53
	OUT6
	Output points for switch amount

	54
	OUT7
	Output points for switch amount

	55
	OUTCOM2
	General negative common for Output4-7 (Output points for switch amount)

	56
	OUT8
	Output points for switch amount

	57
	OUT9
	Output points for switch amount

	58
	OUT10
	Output points for switch amount

	59
	OUT11
	Output points for switch amount

	60
	OUTCOM3
	General negative common for Output8-11 (Output points for switch amount)

	61
	+12V
	Positive port of internal +12V power supply, not available for external power supply

	62
	GND
	Internal power supply earthing

(
J2 line
[image: image3.png]XECAH
XECA-
XECBH
1033 [yprp-

YECAH
1034 gy

YECBH
1035 gy

ZEC
1036 g0,

Zech+
107 [pcp-

ACA
1038 (g,
ABCE
1039 gy
[
24N

N2 (YN

e’

TOTTL Lttty

Trererere PP Ly

2s(zI
27(aiN)
2s
2s
ao

a1
ouriz
ourt3
ourta
ouris
ouTcoms
2y
2y
5

+5v
e
G
D

	Line number
	Signal
	Introduction

	1
	XECA+
	X-axis encoder A-phase input+

	2
	XECA-
	X-axis encoder A-phase input -, able to work as general input signal 32

	3
	XECB+
	X-axis encoder B-phase input +

	4
	XECB-
	X-axis encoder B-phase input -, able to work as general input signal 33

	5
	YECA+
	Y-axis encoder A-phase input+

	6
	YECA-
	Y-axis encoder A-phase input -, able to work as general input signal 34

	7
	YECB+
	Y-axis encoder B-phase input +

	8
	YECB-
	Y-axis encoder B-phase input -, able to work as general input signal 35

	9
	ZECA+
	Z-axis encoder A-phase input+

	10
	ZECA-
	Z-axis encoder A-phase input -, able to work as general input signal 36

	11
	ZECB+
	Z-axis encoder B-phase input +

	12
	ZECB-
	Z-axis encoder B-phase input -, able to work as general input signal 37

	13
	AECA+
	A-axis encoder A-phase input+

	14
	AECA-
	A-axis encoder A-phase input -, able to work as general input signal 38

	15
	AECB+
	A-axis encoder B-phase input +

	16
	AECB-
	A-axis encoder B-phase input -, able to work as general input signal 39

	17
	INCOM4
	Common for pin18-25 (Input points for switch amount)

	18
	IN24(XIN)
	X position lock signal; can be used as universal input signal

	19
	IN25(YIN)
	Y position lock signal; can be used as universal input signal

	20
	IN26(ZIN)
	Z position lock signal; can be used as universal input signal

	21
	IN27(AIN)
	A position lock signal; can be used as universal input signal

	22
	IN28
	General input signal

	23
	IN29
	General input signal

	24
	IN30
	General input signal

	25
	IN31
	The signal to stop using the hardware, able to work as general input signal

	26
	OUT12
	Output points for switch amount

	27
	OUT13
	Output points for switch amount

	28
	OUT14
	Output points for switch amount

	29
	OUT15
	Output points for switch amount

	30
	OUTCOM4
	General negative common for Output12-15 (Output points for switch amount)

	31
	+12V
	Positive port of internal +12V power supply, not available for external power supply

	32
	+12V
	Positive port of internal +12V power supply, not available for external power supply

	33
	+5V
	Positive port of internal +5V power supply, not available for external power supply

	34
	+5V
	Positive port of internal +5V power supply, not available for external power supply

	35
	GND
	Internal power supply earthing

	36
	GND
	Internal power supply earthing

	37
	GND
	Internal power supply earthing

Remark: In case an encoder is used for general input signals, XECA+, XECB+, YECA+, YECB+, ZECA+, ZECB+, AECA+, and AECB+ will be respectively used as public ports of corresponding input signals.

Voltage at the public ports can only be +5V; in case of using an external+12V power supply, users must serially connect a 1K resistance. Please refer to the following digital input connection part for wiring method.

(CONNECTION FOR PULSE/ DIRECTION INPUT SIGNAL
Pulse output is in differential output.

May be conveniently connected with a stepping/ servo driver

The following figure shows open-collector connection between pulse and direction.
[image: image35.png](et . Iy sugsskel - LML

The following figure shows differential-output connection between pulse and direction signals; this method is recommended as it is differential connection with strong resistance to disturbance.
[image: image36.png]dir_logic 7 FLKRAR L 7 LKL

0 Tow it

1 Hi Tow

Remark: Refer to Appendix A for wiring maps of stepping motor drivers, normal servo motor driver and terminal panel.

(CONNECTION FOR ENCODER INPUT SIGNAL

[image: image4.png]R

SRR (OPUI-COLLECY) Gt MR RRE]
+SVEIERT RATRF +12VIBR X 1KG +2aVENBRT Re 216

.
7)
(e i

X

45 amn DIV HHEERSERE

(CONNECTION FOR DIGITAL INPUT

Remark:
(1) Public terminal for IN0-IN7: INCOM1

 Public terminal for IN8-IN15: INCOM2
 Public terminal for IN16-IN25: INCOM3
 Public terminal for IN24-IN31: INCOM4
(2) To make input signals effective, users shall make sure: firstly, the photoelectric coupling public ports for corresponding input signals (INCOM1, INCOM2, INCOM3 or INCOM4) have been connected with anodes of 12V/ 24V power supply; secondly, one port of the normal switch or earthing cable of the approach switch has been connected with the cathode (earthing cable); and lastly, the other port of the normal switch or the control of the approach switch has been connected with the input port corresponding by the terminal panel.

(3) The following is the actual wiring map of power supply from normal switch and approach switch to photoelectric coupling public ports, through external power supply.

(ADT-9162 terminal block wiring diagram：

[image: image5.png]s Inn(yEes)
)
PR -
i
H
H
i
8o
oW
no®
B
BoR
Bo#
wo#
BoR
-
il
[
noE
BoE
7o
B8
noa
§ &

2vizav
i
1

(ADT-9112 terminal block wiring diagram：
[image: image6.jpg]Heois
ILIT- (2]
LTINS
ZSTOPO (TN1 4
ZSTOP1 (IN15)

i P Edemdl

Fe eyt T o Rowethe
e ialiezeiin) 2
XSTOPO (IN2)

ISESTOPL () — .,

THiE
(INLT) I,

THCONA. S 1

LT sloTIo —
ALNT+(IN19) sl LI (ING,
ASTOPO (IN20, joJLHT+{INT,

025 10°ST0PT (1S,
—EUEIE R

Remark:

When the jumper cap T1, T2 used in parallel, the four INCOM ports were connected to the unified 24V power when the jumper cap connected. Do not need to connecte the pin1、8、15、22 which are on P2 Wiring terminals to the +24 power.
(Encoder signals used as the general-purpose input signals wiring diagram
[image: image7.png]K|

T
2 e
SE 8w
i e
Se e
s i s =
T 8L o o
Ims[ZEEAo L e am
o]
Il!:ﬂ[ZEEBo urs 18 ams
= o
s [i S A
e i
s [5E 1S 1
AECE- i e
INCOM4 it R &b
24 w3 ao
N e Proe

Remark: In case an encoder is used for general input signals, XECA+, XECB+, YECA+, YECB+, ZECA+, ZECB+, AECA+, and AECB+ will be respectively used as public ports of corresponding input signals.

Voltage at the public ports can only be +5V; in case of using an external+12V power supply, users must serially connect a 1K resistance. Please refer to the following digital input connection part for wiring method.

(CONNECTION FOR DIGITALOUTPUT

[image: image8.png]TT
QUTO-0UT31 +
Tz 1o
Ts 2
- ‘PJ%

Remark:

(1) Public terminal for OUT0-OUT5: OUTCOM1

 (2) To make output signals effective, users must make sure of connection between the output public port OUTCOM1 and cathode of external power supply (earthling cable) if using external power supply, or connection between internal power supply earthling (GND) and the ground if using internal power supply. Relay coils must have one side connected with the power supply anode and the other side connected with the corresponding output port of the terminal panel.

(3) The following picture is the actual wiring map for power supply by external power supply.
(ADT-9162 terminal block wiring diagram：

[image: image9.png]PUCOMI T =
[}
i
H
LI e
[- S
8o
oW
no®
B
BoR
Bo#
wo#
BoR
-
il
[
noE
BoE
7o
B8
noa
§ &

(ADT-9112 terminal block wiring diagram：
[image: image10.jpg]EXT GND fo~ L AT o
T P3 ternal Power2d4v+
it —gl0 jfoum L Etem Pz
LT rp] 1 [

12 3Poum A

13 emrow
ouria _Jid gfour
oot —gis §foum

i
-

Remark:

General negative common for pin1, 5,9,13 on P4 has been grounded. Additionally, users can also connect them to ground. Please connect the load between the power supply and output contact. The load can be resistive, inductive or capacitive. The digital output part of ADT-9112 terminal used power amplifier circuit design; output currents up to 500MA.It can be direct-drive cylinders, solenoid valves and other devices, do not need to connecte it to the external +24 power.
Chapter 4 Software installation

ADT8940A1 card must be used with drive installed under Win95/ Win98/ NT/ Win2000/ WinXP, but in case of DOS, no drive is required to be installed.

The following part takes Win2000 and WinXP for example, and users may refer to other operating systems.

Drive for the control card is located in the Drive/ ControlCardDrive folder within the CD, and the drive file is named as ADT8940A1.INF.
(DRIVE INSTALLATION IN WIN2000

The following part takes Win2000 Professional Version as example to indicate installation of the drive; other versions of Win2000 are similar.

After attaching the ADT8940A1 card to the PCI slot of a computer, a user shall log in as administrator to the computer; upon display of the initial interface, the computer shall notify “Found new hardware” as follows:

[image: image11.png]Wolcome to the Found New
Hardware Wizard

This s s et ceice diver o3

herbuae i

Heas | taon

Just click “Next” to display the following picture:

[image: image12.png]Install Harcware Device Dilvers
& dosico diver s 3 sotaaropegra hal orabio et dosioo o etk ith
ancpeitng sy

This izard il copite il o tis doioe:

% MoberLingo

A dovicodivris 3 softrarsprogiam bt ks sz dovio o Wincons
e e oy e i, oo e Ui s an et e
inalsber i Nt
Whatdo o wani i e 10 57

 Seatch o a sufebie diver o o devie Fecamendec]

® Bt slirmmdhap sl e
e

Bk Carcel

Click again “Next” to display the following picture:

[image: image13.png][Found New Hardware Wizard

Locats v e x
e et indors b s v &

Secrch o diver l o o ol hacre dvic:

% et

The i seetches ot sital v 1 i e un s ot ard i
aru et e Flcuing afinal ssarch erliors hat v oeriy

To stat e seach clok New, lfyou e seschirpon foppy sk o COAOM e
incrthe lopey i r D befor cickirg et

Opions seatch beaton:
T Fiooy gk dies
¥ COROM dives

T~ Speiya oration
I Mirrooit Wt e

<ok =

Then select “Specify a location” and Click again “Next” and Click “Browse” button to select DevelopmentPackage/ Drive/ CardDrive and find the ADT8940A1.INF file, then click “OK” to display the following interface:
[image: image14.jpg]Driver Files Search Resuls
Thevizadros bisid seachigics civer s s sou baduas devce

Thowzadicurdadie o e el o

. oo

i vt i T et the v Wi s, il .

D rwivcwr s

Click “Next” to display the following picture:
[image: image15.jpg]Completing the Found New
Hardware Wizard

& AIT-S94KI Motion Card

Winehws hasfrisher nstlin the scftuarefr i devioe

Tochss i

| cick Frisn

Finally click “Finish” to complete installation.
(DRIVE INSTALLATION UNDER WINXP

Installation under WinXP is similar to that under Win2000, specifically:

[image: image16.png]2 Wizard

Welcome to the Found New
Hardware Wizard

Windows will search for curent and updated software by
looking on your computer, on the hardware installation CD. or on
the Windows Update Web site (with your permission).

Read out privacy policy

Can Windows connect to \Windows Update to search for
software?

O Yes, this time only
(O Yes, now and every ime | connect a device
@ No. ot this time.

Click Net to continue.

[image: image17.png]dware Wizar

Welcome to the Found New
PN Hardware Wizard
N

This wizard helps you nstall software for

Nethos Unusable Parael Port

*)_If your hardware came with an installation CD
S or floopy disk. insert it now.

‘What doyou want the wizard to do?

sl the stware sutomaticall (Recormendsd)
st o & 5 o 3pecie locaton [Advanced]

Ciick Neat to continue.

B [icwi]

[image: image18.png]Fo

Please choose your search and installation options.

(©Beaich for e best diver i these Jocations!

Use the check bases below to it or expand the defaul search, which includes local
paths and removable media. The best diver found wil be installed.

[J Search removable meda (foppy. CO-ROM..)
Include this location in the search:

Ex\drivelcard-drive v

© Don't search. | il choos the diver to instal

Chogse this opton to select the device dilver fom a st Windows does not gusrantee that
the diiver you choose wil be the best mafch for your hardwre.

Click “Browse” button to select Drive/ CardDrive and find the ADT8940A1.INF file, then click “Next” to display the following interface:
[image: image19.jpg]Completing the Found New
Hardware Wizard
The wizard has finished installing th software for

& AIT-S94KL Motion Card

Click Firish (0 close the wizerd

7

Then click “Finish” to complete installation.
Chapter 5 Functions

(
Pulse output method

Pulse output may be realized through either independent 2-pulse or 1-pulse. In case of independent 2-pulse, the positive direction drive has PU/CW outputting drive pulses, and the negative direction drive has DR/CCW outputting drive pulses. In case of 1-pulse, PU/CW outputs drive pulse and DR/CCW outputs direction signals.

(
Hardware Limit signal

Hardware limit signals LMT+ and LMT- are respectively to limit the input signals outputted by drive pulse along positive and negative directions, able to be set as “effective, “ineffective” with high/ low levels.—Actually “effective” or “ineffectivey” can be set for positive limit and negative limit individually; in case “ineffective” is selected, they may work as ordinary input points.

Hardware limit signals STOP0 and STOP1 are input signals that may realize hardware termination for all axis drive and may be set as “effective”, “ineffective” as well as the termination method for high/ low levels. In case “ineffective” is selected, they may work as generl input points. Besides, they, when working as drive for interpolation, are effective for the minimum interpolation axis only.
(Linear interpolation

This card may work for 2-4 axes linear interpolation and support any 2 axes or 3 axes linear interpolation, under the modified method of point-by-point comparison, which can ensure uniform pulse along the long axis, giving the precision within one pulse.

Firstly, take the axis outputting the maximum pulses among the axes joining interpolation as the long axis, and proportionally distribute for the rest axes. Speed control applies only to speed of the long axis, for example: (1-X axis, 2-Y axis, 3-Z axis, and 4-W axis)

Take four axes for linear interpolation, while Axis 1 outputs 1000 pulses, Axis 2 outputs 500, Axis 3 outputs 250 and Axis outputs 2000.
[image: image20.png]X
Y4
Z%h

Wi

From the above figure, W axis (Axis 4) shall be the long axis, and the rest axes proportionally share the pulses.
Setting of interpolation speed takes the minimum speed of an axis among the joined axes as the benchmark, for example, if Axis 2 and Axis 3 join linear interpolation, the interpolation speed will be determined by speed of Axis 2. Moreover, speed of interpolation is only half of the single axis. Example in more details:
Axis 2 and Axis 3 work for two-axis linear interpolation, with Axis 2 outputs 10000 pulses along positive direction and Axis 3 outputs 5000 pulses along negative direction, which means Axis 2 is the long axis.
set_startv(0,2,1000);

set_speed(0,2,1000);

inp_move2(0,2,3,10000,-5000);

After execution of the above program, Axis 2 will send 10000 pulses in the frequency of 1000/2=500Hz, while frequency of Axis 3 shall be 500*5000/10000=250Hz.

If speed of Axis 2 realizes trapezoidal acceleration/ deceleration, interpolation will also follow such trapezoidal acceleration/ deceleration.

· Quantitative driving
Quantitative driving means to output pulse of specified amount in constant velocity or acceleration/deceleration. It is useful to move to specified position or execute specified action. The quantitative driving of acceleration/deceleration is shown in the following picture. Deceleration starts when left output pulses are less than accumulated acceleration pulses. The driving stops after the output of specified pulses.

Configure the following parameters to execute the quantitative driving of acceleration/deceleration:
a) Acceleration/deceleration A/D

b) Start velocity SV

c) Driving velocity V

d) Output pulse P

[image: image21.png]Velocity.

Driving velocity|-

Start velocity

Automatic
deceleration

Stop after the output of —=
Spacified pulses

Quantitative driving Tine

Acceleration/deceleration quantitative driving automatically decelerates from the deceleration point as shown in the picture above.
· Velocity curve
1) Constant velocity driving
Linear acceleration/deceleration driving is to accelerate from start velocity to specified driving velocity linearly.

In quantitative driving, the acceleration counter records the accumulated pulses of acceleration. If left output pulses are less than acceleration pulses, it will decelerate (automatically). In deceleration, it will decelerate to start velocity linearly in specified velocity.

Configure the following parameters to execute linear acceleration/deceleration driving:
· Range R

· Acceleration A Acceleration and deceleration
· Deceleration D Deceleration if they are set separately (if necessary)

· Start velocity SV

· Driving velocity V

[image: image22.png]Velocityg

Start velocity|

Driving velocity

Constant velocity driving

2) Linear acceleration/deceleration driving
Linear acceleration/deceleration driving is to accelerate from start velocity to specified driving velocity linearly.

In quantitative driving, the acceleration counter records the accumulated pulses of acceleration. If left output pulses are less than acceleration pulses, it will decelerate (automatically). In deceleration, it will decelerate to start velocity linearly in specified velocity.

Configure the following parameters to execute linear acceleration/deceleration driving:
· Range R

· Acceleration A Acceleration and deceleration
· Deceleration D Deceleration if they are set separately (if necessary)

· Start velocity SV

· Driving velocity V

[image: image23.png]Velocity

Driving velocity [--

Deceleration

<

\Aeeeleration

Start velocity
Outpat pulses are for

and can’ t reach

driving velocity

Tine

Linear acceleration/deceleration driving

· Position lock
Realize hardware position lock function with the IN signal on each axis. With one lock signal, the current position (either logical or actual) of all axes can be locked.

The position lock is usefyl in mearsuring system.

· External signal driving
External signal driving is the motion controlled by external signals (handwheel or switch). It is mainly used in the manual debugging of machines and provides a lot of convenience in teaching system.

To simplify the wiring, the motion card short connects the positive driving signals of the four axes and also short connects the negative driving signals of the four axes; therefore, only one signal cable of the coder is connected to the external interface of external singals.

Chapter 6 List of ADT8940A1 basic library functions
List of V110 library functions
	Function type
	Function name
	Function description
	Page

	Basic parameters
	ADT8940A1_initial
	Initialize card
	37

	
	get_lib_version
	Get version
	37

	
	set_pulse_mode
	Set pulse mode
	37

	
	set_limit_mode
	Set limit mode
	38

	
	set_stop0_mode
	Set stop mode
	38

	
	set_stop1_mode
	Set stop mode
	39

	
	set_delay_time
	Delay status
	39

	
	set_suddenstop_mode
	Hardware stop
	39

	Check for drive status
	get_status
	Get status of single-axis drive
	40

	
	get_inp_status
	Get status of interpolation
	40

	
	get_delay_status
	Delay status
	40

	
	get_hardware_ver
	Hardware version
	40

	Movement parameter setting
	set_acc
	Set acceleration
	41

	
	set_startv
	Set starting speed
	41

	
	set_speed
	Set drive speed
	41

	
	set_command_pos
	Set logical position counter
	41

	
	set_actual_pos
	Set real position counter
	42

	
	set_symmetry_speed
	Set symmetry speed
	42

	Check for motion

parameters
	get_command_pos
	Get logical position
	42

	
	get_actual_pos
	Get real position
	43

	
	get_speed
	Get drive speed
	43

	
	get_out
	Get output status
	43

	Drive category
	pmove
	Single-axis quantitative drive
	43

	
	dec_stop
	Deceleration stop
	44

	
	sudden_stop
	Sudden stop
	44

	
	Inp_move2
	2-axis linear interpolation
	45

	
	inp_move3
	3-axis linear interpolation
	45

	
	inp_move4
	4-axis linear interpolation
	45

	Switch amount category
	read_bit
	Read single input point
	46

	
	write_bit
	Output single output point
	46

	Composite driving
	symmetry_relative_move
	Symmetrical relative movement of single-axis
	46

	
	symmetry_absolute_move
	Symmetrical absolute movement of single-axis
	47

	
	symmetry_relative_line2
	Relative movement of two-axis symmetrical linear interpolation
	47

	
	symmetry_absolute_line2
	Two axes symmetric linear interpolation absolute moving
	47

	
	symmetry_relative_line3
	Three axes symmetric linear interpolation relative moving
	48

	
	symmetry_absolute_line3
	Three axes symmetric linear interpolation absolute moving
	48

	
	symmetry_relative_line4
	Four axes symmetric linear interpolation relative moving
	49

	
	symmetry_absolute_line4
	Four axes symmetric linear interpolation absolute moving
	49

	manual driving
	manual_pmove
	Quantitative drive function of external signal
	50

	
	manual_continue
	Continuous drive function of external signal
	50

	
	manual_disable
	Shut down the enabling of external signal drive
	50

	position lock
	set_lock_position
	set lock mode
	50

	
	get_lock_status
	get lock status
	51

	
	get_lock_position
	get lock position
	51

	
	clr_lock_status
	clean lock position
	51

	hardware cache
	fifo_inp_move1
	single axis FIFO
	51

	
	fifo_inp_move2
	two axes FIFO
	52

	
	fifo_inp_move3
	three axes FIFO
	52

	
	fifo_inp_move4
	four axes FIFO
	53

	
	reset_fifo
	reset FIFO
	53

	
	read_fifo_count
	read FIFO
	53

	
	read_fifo_empty
	read FIFO
	53

	
	read_fifo_full
	read FIFO
	54

Chapter 7 Details of ADT8940A1 basic library functions

(CATEGORY OF BASIC PARAMETER SETTING

1.1 Initialize card

int ADT8940A1_initial(void);
(1) Return >0 means amount of installed ADT8940A1 cards; in case the Return is 3, the available card numbers shall be 0, 1, and 2;
(2) Return =0 means no installation of ADT8940A1 card;

(3) Return <0 means no installation of service if the value is -1 or PCI bus failure is the value is -2.
Remark: Initialization functions are preliminary conditions to call other functions, thus must be called firstly so as to verify available cards and initialize some parameters.
1.2 Get current library version

int get_lib_version();
Here return are combination of hardware and library version number.
1.3 Set output pulse mode

int set_pulse_mode(int cardno, int axis, int value,int logic,int dir_logic);
cardno
Card number

axis

Axis number (1-4)

value 0：Pulse + Pulse method
1：Pulse + direction method

logic
 0: Positive logic pulse

1: Negative logic pulse

dir-logic 0: Positive logic direction input signal 1: Negative logic direction input signal

Return
0: Correct

1: Wrong

Default mode: Pulse + direction, with positive logic pulse and positive logic direction input signal

1.4 Set mode of nLMT signal input along positive/ negative direction

int set_limit_mode(int cardno, int axis, int v1,int v2,int logic);
cardno
Card number
axis

Axis number (1-4)
v1

0: positive limit is effective
 1: positive limit is ineffective
v2

0: negative limit
 is effective 1: negative limit is ineffective

logic

0: low level is effective
 1: high level is effective

Return 0: Correct

 1: Wrong
Default mode: positive and negative limits with low level are effective

1.5 Set mode of stop0 input signal
int set_stop0_mode(int cardno, int axis, int v,int logic);
cardno
Card number
axis

Axis number (1-4)
v

0: stop0 is ineffective

1: stop0 is effective

logic

0: low level is effective
1: high level is is effective

Return 0: Correct

1: Wrong
Default mode: stop0 is ineffective

1.6 Set mode of stop1 input signal
int set_stop1_mode(int cardno, int axis, int v,int logic);
Cardno Card number

Axis Axis number (1-4)

v

0: stop1 is ineffective

1: stop1 is effective

logic

0: low level is effective

1: high level is effective

Return
0: Correct

1: Wrong
Default mode: stop1 is ineffective

1.7 Set mode of stop1 input signal

int set_delay_time(int cardno, long time)
cardno
Card number

time delay time (Uint:1/8us)

Return
0: Correct

1: Wrong
Remark: The time unit is 1/8us, with the maximum integer value as its maximum
1.8 Set stop using the hardware
int set_suddenstop_mode(int cardno, int v, int logical)
cardno
Card number

v

0: ineffective

 1: effective

logical 0：low level effective
1：high level effective

Return
0: Correct

1: Wrong
Remark: Hardware stop signals are assigned to use the 34 pin at the P3 terminal panel (IN31)
(
CATEGORY OF DRIVE STATUS CHECK

2.1 Get status of single-axis drive

int get_status(int cardno,int axis,int *value)

cardno
Card number
axis

Axis number (1-4)

value

Indicator of drive status
0：Drive completed
Non-0: Drive in process

Return
0: Correct

1: Wrong
2.2 Get status of Interpolation
int get_inp_status(int cardno,int *value)

cardno
Card number
value Indicator of i Interpolation:

 0: Interpolation completed
1: Interpolation in process

Return
0: Correct

1: Wrong
2.3 Get status of Delay

int get_delay_status(int cardno)
cardno
Card number

Return
0: delay completed

1: delay in process
2.4 Get hardware version

int get_hardware_ver(int cardno)
cardno
Card number

Return
 256： version 1.0
 257： version 1.1
(
CATEGORY OF MOVEMENT PARAMETER SETTING

(Remark: The following parameters are not determined after initialization thus must be set before use.

3.1 Set acceleration
int set_acc(int cardno,int axis,long value);
cardno
Card number
axis

Axis number

value Acceleration(0-32000)

Return
0: Correct

1: Wrong

3.2 Set starting speed

int set_startv(int cardno,int axis,long value);

cardno
Card number

axis

Axis number
value
 Speed(0-2M)
Return 0: Correct

1: Wrong
3.3 Set drive speed

int set_speed(int cardno,int axis,long value);

cardno
Card number

axis

Axis number
value Speed(0-2M)

Return 0: Correct

1: Wrong

3.4 Set logical position counter
This is to set values for the logical position counter
int set_command_pos(int cardno,int axis,long value);

cardno
Card number

axis

Axis number
value
 Range (-2147483648~+2147483647)

Return
0: Correct

1: Wrong

A logialc position counter can read and write at any time.

3.5 Set real position counter

This is to set values for the real position counter

int set_actual_pos(int cardno,int axis,long value);

cardno
Card number

axis

Axis number
value Range (-2147483648~+2147483647)

Return
0: Correct

1: Wrong

An real position counter can read and write at any time.
3.6 Set symmetry speed
This is to set values for the symmetry speed
int set_symmetry_speed(int cardno, int axis,long lspd,long hspd,double tacc);

cardno
Card number

axis
Axis number

lspd start speed

hspd running speed

tacc acceleration time

Return
0: Correct

1: Wrong
Remark: This function is a combination of multiple functions,

 such as set_acc,set_startv,set_speed etc.
(
CATEGORY OF MOTION PARAMETER CHECK

The following functions can be called at any time

4.1 Get logic position of each axis

int get_command_pos(int cardno,int axis,long *pos)

cardno
Card number

axis

Axis number

pos

Indicator of logic position value

Return
0: Correct

1: Wrong

This function can get the logic position of the corresponding axis at any time, and in case of no out-step by motor, pos values just indicate the current position of the axis.

4.2 Get real position of each axis (i.e., encoder feedback input)
int get_actual_pos(int cardno,int axis,long *pos)

cardno
Card number

axis

Axis number

pos

Indicator of actual position value

Return
0: Correct

1: Wrong

This function can get the real position of the corresponding axis at any time, and even though in case of out-step by motor; pos values still indicate the real position of the axis.

4.3 Get motion speed

int get_speed(int cardno,int axis,long *speed)

cardno
Card number

axis

Axis number

speed
Indicator of current drive speed

Return
0: Correct

1: Wrong

Its data unit is same as that for motion speed setting value V.

This function can get the axis drive speed at any time.
4.4 Get status of output

int _stdcall get_out(int cardno, int number)

cardno
Card number

axis
 Axis number

Return Current output point status
 -1: Wrong

(
CATEGORY OF DRIVE

5.1 Single-axis quantitative drive

int pmove(int cardno,int axis,long pulse)

cardno
Card number

axis

Axis number

pulse
Outputted pulses

>0: move along positive direction

<0: move along negative direction

Range (-268435455~+268435455)

Return
0: Correct

1: Wrong

Remark: Users must correctly set the parameters required by speed curve before making drive commands.

5.2 Deceleration stop

int dec_stop(int cardno,int axis)

cradno
Card number

axis

Axis number

Return
0: Correct

1: Wrong

During drive pulse output, this command will make deceleration stop. Users may also use this command to stop when the drive speed is lower than the starting speed.

Remark: During linear interpolation, if requiring deceleration stop, users shall make command only for the earliest interpolation axis, otherwise may fail to achieve expected results.

5.3 Sudden stop
int sudden_stop(int cardno,int axis)

cardno Card number

axis
Axis number

Return
0: Correct

1: Wrong

This command will suddenly stop the pulse output in process, even though it is in acceleration/ deceleration drive.

Remark: During linear interpolation, if requiring sudden stop, users shall make command only for the earliest interpolation axis, otherwise may fail to achieve expected results.
5.4 2-axis interpolation
int inp_move2(int cardno,int axis1,int axis2,long pulse1,long pulse2)

cardno
Card number

axis1
,axis2 Axis number joining interpolation

pulse1,pulse2
Relative distance of movemen

Range (-8388608~+8388607)

Return
0: Correct

1: Wrong

5.5 3-axis interpolation
int inp_move3(int cardno,int axis1,int axis2,int axis3,long pulse1,long pulse2,long pulse3)

cardno
Card number
axis1
,axis2,axis3 Axis number joining interpolation

pulse1,pulse2,pulse3 Relative distance of moiotn along specified axis (axis1/ axis2/ axis3)
Range (-8388608~+8388607)

Return
0: Correct

1: Wrong

5.6 4-axis interpolation
int inp_move4(int cardno,long pulse1,long pulse2,long pulse3,long pulse4)

cardno Card number

pulse1,pulse2,pulse3,pulse4
Relative distance of movement along X-Y-Z-W axis

Range (-8388608~+8388607)

Return
0: Correct

1: Wrong
(
CATEGORY OF SWITCH AMOUNT INPUT/ OUTPUT

6.1 Read single input point
int read_bit(int cardno,int number)

cardno
Card number

number
Input point (0-39)
Return
0: low level 1: high level -1: error
6.2 Output single output point

int write_bit(int cardno,int number,int value)

cardno
Card number

number
Output point (0-15)

value

0: low

1: high

Return

0: correct

1: wrong

A number corresponding to the output number
(
CATEGORY OF COMPOSITE DRIVING
To provide convenience for the customers, we encapsulated composite driving functions in the basic library functions. These functions mainly integrate speed mode setting, speed parameter setting and motion functions, while absolute motion and relative motion are also considered.
7.1 Single axis symmetric relative moving
int symmetry_relative_move(int cardno, int axis1, long pulse1, long lspd ,long hspd, double tacc)
 cardno-card number

 axis1---axis number1

 pulse1-- pulse of axis 1

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)
Return
 0: Correct

1: Wrong
7.2 Single axis symmetric absolute moving
int symmetry_absolute_ move (int cardno, int axis1, int axis2, long pulse1, long pulse2, long lspd ,long hspd, double tacc)
 cardno-card number

 axis1---axis number1

 pulse1-- pulse of axis 1

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)
Return
 0: Correct

1: Wrong
7.3 Two axes symmetric linear interpolation relative moving
int symmetry_relative_line2(int cardno, int axis1, int axis2, long pulse1, long pulse2, long lspd ,long hspd, double tacc)
 cardno-card number

 axis1---axis number1

 axis2---axis number2

 pulse1-- pulse of axis 1

 pulse2-- pulse of axis 2

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)
Return
 0: Correct

1: Wrong
7.4 Two axes symmetric linear interpolation absolute moving
int symmetry_absolute_line2(int cardno, int axis1, int axis2, long pulse1, long pulse2, long lspd ,long hspd, double tacc)
 cardno-card number

 axis1---axis number1

 axis2---axis number2

 pulse1-- pulse of axis 1

 pulse2-- pulse of axis 2

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)
Return
 0: Correct

1: Wrong
7.5 Three axes symmetric linear interpolation relative moving
int symmetry_relative_line3(int cardno, int axis1, int axis2, int axis3, long pulse1, long pulse2, long pulse3, long lspd ,long hspd, double tacc)
 cardno-card number

 axis1---axis number1

 axis2---axis number2

 axis3---axis number3

 pulse1-- pulse of axis 1

 pulse2-- pulse of axis 2

 pulse3-- pulse of axis 3

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)
Return
 0: Correct

1: Wrong
7.6 Three axes symmetric linear interpolation absolute moving
int symmetry_absolute_line3(int cardno, int axis1, int axis2, int axis3, long pulse1, long pulse2, long pulse3, long lspd ,long hspd, double tacc)
 cardno-card number

 axis1---axis number1

 axis2---axis number2

 axis3---axis number3

 pulse1-- pulse of axis 1

 pulse2-- pulse of axis 2

 pulse3-- pulse of axis 3

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)
Return
 0: Correct

1: Wrong
7.7 Four axes symmetric linear interpolation relative moving
 int symmetry_ relative _line4(int cardno, long pulse1, long pulse2, long pulse3, long pulse4,long lspd ,long hspd, double tacc)
cardno-card number

 pulse1-- pulse of axis 1

 pulse2-- pulse of axis 2

 pulse3-- pulse of axis 3

 pulse4-- pulse of axis 4

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)

Return
 0: Correct

1: Wrong
7.8 Four axes symmetric linear interpolation absolute moving
int symmetry_absolute _line4(int cardno, long pulse1, long pulse2, long pulse3, long pulse4,long lspd ,long hspd, double tacc);
 cardno-card number

 pulse1-- pulse of axis 1

 pulse2-- pulse of axis 2

 pulse3-- pulse of axis 3

 pulse4-- pulse of axis 4

 lspd --- Low speed

 hspd --- High speed

 tacc--- Time of acceleration (Unit: sec)

Return
0: Correct

1: Wrong
(
CATEGORY OF EXTERNAL SIGNAL DRIVING
8.1 Quantitative drive function of external signal
int manual_pmove(int cardno, int axis, long pos)

 cardno-- card number

 axis --axis number

 pulse-- pulse

Return 0：Correct 1：Wrong

Note: (1) Send out quantitative pulse, but the drive does not start immediately until the external signal level changes.

 (2)Ordinary button and handwheel are acceptable.
8.2 Continuous drive function of external signal
int manual_continue(int cardno, int axis)

 cardno-- card number

 axis --axis number

Return 0：Correct 1：Wrong

Note: (1) Send out quantitative pulse, but the drive does not start immediately until the external signal level changes.

 (2)Ordinary button and handwheel are acceptable.
8.3 Shut down the enabling of external signal drive
int manual_disable(int cardno, int axis)

 cardno-- card number

 axis --axis number

Return 0：Correct 1：Wrong

· CATEGORY OF LOCK POSITION
9.1 lock the logical position and real position for all axes
int set_lock_position(int cardno, int axis,int mode,int regi,int logical)
 cardno —card number

 axis —reference axis

 mode —set lock mode 0:inefficacy 1:efficiency

 regi —register mode 0:logical position 1:real position

 logical—level signal 0: from high to low 1:from low to high
Return 0：Correct 1：Wrong

9.2 Get the status of position lock
int get_lock_status(int cardno, int axis, int *v)
cardno card number

axis axis number(1-4)

status Lock status (0: unlocked, 1: locked)
Return 0：Correct 1：Wrong

9.3 Get_lock_position(int cardno,int axis,long *pos)
 int get_lock_position(int cardno,int axis,long *pos)
 cardno card number

 axis axis number

 pos lock position
Return 0：Correct 1：Wrong

9.4 Clr_lock_status(int cardno, int axis)
int clr_lock_position(int cardno,int axis,long *pos)
 cardno card number

 axis axis number
Return 0：Correct 1：Wrong

(
CATEGORY OF HARDWARE CACHE
10.1 Single axis FIFO
Int fifo_inp_move1(int cardno,int axis1,long pulse1,long speed)

cardno card number

axis1
 axis number(1-4)

pulse1 pulses in FIFO cache
speed FIFO speed

Return 0：Correct 1：Wrong
10.2 Two axes FIFO
Int fifo_inp_move2(int cardno,int axis1, ,int axis2,long pulse1, long pulse2,long speed)

cardno card number

axis1
 axis number(1-4)

axis2
 axis number(1-4)

pulse1 pulses in FIFO buffer

pulse2 pulses in FIFO buffer

speed FIFO speed
Return 0：Correct 1：Wrong

10.3 Three axes FIFO
int fifo_inp_move3(int cardno,int axis1,int axis2,int axis3,long pulse1,long pulse2,long pulse3,long speed)

cardno card number

axis1
 axis number(1-4)

axis2
 axis number(1-4)

 axis3
 axis number(1-4)

pulse1 pulses in FIFO buffer

pulse2 pulses in FIFO buffer

pulse3 pulses in FIFO buffer

speed FIFO speed
Return 0：Correct 1：Wrong

10.4 Four axes FIFO
int fifo_inp_move4(int cardno,long pulse1,long pulse2,long pulse3,long pulse4,long speed)

cardno card number

axis1
 axis number(1-4)

axis2
 axis number(1-4)

 axis3
 axis number(1-4)

axis4
 axis number(1-4)

pulse1 pulses in FIFO buffer

pulse2 pulses in FIFO buffer

pulse3 pulses in FIFO buffer

pulse4 pulses in FIFO buffer

speed FIFO speed
Return 0：Correct 1：Wrong

10.5 Reset FIFO Cache
int reset_fifo(int cardno)
cardno card number
Return 0：Correct 1：Wrong

10.6 Read FIFO cache To determine FIFO command havn't been implemented
int read_fifo_count(int cardno,int *value)
cardno card number
value space(bytes) of commands that havn't been implemented
Return 0：Correct 1：Wrong

10.7 Read FIFO cache To determine whether it is empty
int read_fifo_empty(int cardno)
cardno card number
Return 0：non -empty 1：empty
10.8 Read FIFO cache To determine whether it is full
int read_fifo_full(int cardno)
cardno card number
Return 0：non-full 1：full
Chapter 8 Guide to motion control function library
1. Introduction on ADT8940A1 function library

ADT8940A1 function library is actually the interface for users to operate the movement control card; users can control the movement control card to execute corresponding functions simply by calling interface functions.

The movement control card provides movement function library under DOS and dynamic link library under Windows; the following part will introduce the library calling method under DOS and Windows.

2. Calling dynamic link library under Windows

The dynamic link library ADT8940A1.dll under Windows is programmed in VC, applicable for general programming tools under Windows, including VB, VC, C++Builder, VB.NET, VC.NET, Delphi and group software LabVIEW.

2.1 Calling under VC

(1) Create a new project;

(2) Copy the ADT8940A1.lib and ADT8940A1.h files from DevelopmentPackage/VC in the CD to the routing of the newly created item;

(3) Under File View of the Work Area of the new item, right click mouse to select “Add Files to Project” and then in the pop-up file dialogue select the file type to be “Library Files(.lib)”, then search out “ADT8940A1.lib” and select it, finally click “OK” to finish loading of the static library;

(4) Add #include “ADT8940A1.h“ in the declaim part of the source file, header or overall header “StdAfx.h”.

After the above four steps, users can call functions in the dynamic link library.
Remark: The calling method under VC.NET is similar.

2.2 Calling under VB

(1) Create a new project;

(2) Copy the ADT8940A1.h file from DevelopmentPackage/VB in the CD to the routing of the newly created item;

(3) Select the menu command Engineering/Add module and subsequently Save Current in the dialogue to search out the ADT8940A1.bas module file, finally click the Open button.

After the above three steps, users can call functions in the dynamic link library.
Remark: The calling method under VB.NET is similar.
2.3 Calling under C++Builder

(1) Create a new project;

(2) Copy the ADT8940A1.lib and ADT8940A1.h files from DevelopmentPackage/ C++Builder in the CD to the routing of the newly created item;

(3) Select the menu command “Project\Add to Project”, and in the pop-up dialogue select the file type to be “Library files(*.lib)”, then search out the “ADT8940A1.lib” file and click Open button;

(4) Add #include “ADT8940A1.h“ in the declaim part of the program file.

After the above four steps, users can call functions in the dynamic link library.

2.4 Calling under LabView 8

(1) Create a new VI;

(2) Copy the ADT8940A1.lib and ADT8940A1.dll files from DevelopmentPackage/ LabVIEW in the CD to the routing of the newly created item;

(3) Right click mouse in the blank area of the program interface to display the Function Palette, select “Select a VI..” and subsequently in the pop-up window select the ADT8940A1.llb file, finally select the required library function in the “Select the VI to Open” window and drag into the program interface.

After the above three steps, users can call functions in the dynamic link library.

3. Calling library functions under DOS

Function libraries under DOS are edited in Borland C3.1 and saved in the DevelopmentPackage/C++ (or C) folder. Library functions may be categorized into large and huge modes, applicable for standard C and Borland C3.1or above versions.

The method of calling function library with Borland C is as follows:

(1) Under the development environment of Borland C, select the “Project\Open Project” command to create a new project;

(2) Copy the ADT8940A1H.LIB or ADT8940A1L.LIB file and ADT8940A1.H file from DevelopmentPackage/ C (or C++) in the CD to the path of the newly created project;

(3) Select the “Project\Add Item” command and further in the dialogue select “ADT8940A1H.LIB” or “ADT8940A1L.LIB”, finally click the Add button;

(4) Add #include “ADT8940A1.h statement in the user program file.

After the above four steps, users can call functions in the dynamic link library.

4. Returns of library functions and their meanings
To ensure users will correctly know execution of library functions, each library function in the function library after completion of execution will return to execution results of the library functions. Users, based on such Returns, can conveniently judge whether function calling has succeeded.
Except “int ADT8940A1_initial(void)” and “int read_bit(int cardno, int number)” with special Returns, other functions have only “0” and “1” as the Returns, where “0” means successful calling and “1” means failed calling.
The following list introduces meanings of function Returns.
	Function name
	Return
	Meaning

	ADT8940A1_initial
	-1
	No installation of service

	
	-2
	PCI slot failure

	
	0
	No installation of control card

	
	>0
	Amount of control card

	Read_bit
	0
	Low level

	
	1
	High level

	
	-1
	Card number or input point out of limit

	Other functions
	0
	Correct

	
	1
	Wrong

Remark: Return 1 means calling error, and the normal cause is wrong cardno (Card Number) or axis (Axis Number) passed during the process of calling library functions. Card number have their values starting as 0, 1, and 2, thus in case there is only one card, the card number must be 0; similarly values of axis number can only be 1, 2, 3 and 4, other values are all wrong.

Chapter 9 Briefing on motion control development

This card will encounter some problems during programming, but most problems are due to failure in understanding the methods of this control card. The following part will give explanation on some unusual and easy-to-misunderstand scenarios.

(
CARD INITIALIZATION

At the beginning users shall call the ADT8940A1_initial() function and ensure the ADT8940A1 card has been correctly installed, then set pulse output mode and limit switch mode. The above parameters shall be set for individual machine, and normally only one setting is required during program initialization, instead of any later setting.
Remark: Library function ADT8940A1_initial is the door to ADT8940A1 card, thus calling other functions are of sense only after successful card initialization with calling to this function.

(
SPEED SETTING
2.1 Constant speed motion

Parameter setting is so simple that users just set the drive speed equal to the starting speed; other parameters need no setting.
Relevant functions:

set_startv

set_speed

(Remark: values used by functions will give the actual speed only after multiplying by the multiple rate.

2.2 Interpolation speed

ADT8940A1 card can take any 2 axes, any 3 axes or all the 4 axes for linear interpolation.
For speed of interpolation, speed parameter for the earliest axis will apply as speed of the long axis, for example,

inp_move2 (0,3,1,100,200) is to apply the speed parameters of the first axis, i.e., X axis, independent of parameter sequence.
inp_move3 (0,3,4,2,100,200,500) is to apply the speed parameters of the second axis, i.e., Y axis, independent of parameter sequence.
Remark: speed multiple rate during interpolation is half of that during single-axis movement, which means under the same parameters speed of interpolation is only half of that of single-axis movement.
(
STOP0, STOP1 signal
Every axis has STOP0, STOP1 .therefore, there are 8 STOP signals totally. These signals are mainly used in back-to-home operation. The back-to-home mode can use either one signal or several signals. Please note that this signal is decelerated stop. For high speed resetting, you can add one deceleration switch before home switch, i.e. use two STOP signals (one for home switch and the other for deceleration switch). You can also use one signal only. In this case, when the machine receives STOP signal, it stops in deceleration, then, moves to opposite direction in constant speed and stops when receives the signal again
Chapter 10 Programming samples in motion control development

Although programming languages vary in types, they can still be concluded as Three Structures and One Spirit. Three Structures refer to sequential structure, cycling structure and branch structure emphasized by all the programming languages, and One Spirit refer to calculation and module division involved in order to complete design assignments, which is also the key and hard point in whole programming design.

To ensure a program is popular, standard, expandable and easy for maintenance, all the later samples will be divided into the following modules in terms of project design: movement control module (to further seal library functions provided by the control card), function realization module (to cooperate code phase of specific techniques), monitoring module and stop processing module.
Now let’s brief application of ADT8940A1 card function library in VB and VC; users using other programming languages may take reference.
(VB PROGRAMMING SAMPLES

1.1 Preparation

(1) Create a new item and save as “test.vbp”;
(2) Add the ADT8940A1.bas module in the item following the above-introduced method;
1.2 Movement control module
(1) Add a new module in the project and save as “ctrlcard.bas”;
(2) At first, within the motion control module self-define initialization functions of the motion control card and initialize library functions to be sealed into initialization functions;
(3) Further self-define relevant motion control functions such as speed setting function, single-axis motion function, and iinterpolation function;
(4) Source code of ctrcard.bas is:

'/*********************** Motion control module ********************

' For developing an application system of great generality,

' extensibility and convenientmaintenance easily and swiftly,

' we envelop all the library functions by category basing on

' the card function library

'***/

Public Result As Integer 'return
Const MAXAXIS = 4 'axis number
'*******************initial motion-card************************
' this function is boot of using motion-card

' Return<=0 fail to initial motion-card，

' Return>0 Succeed in initial motion-card
'***

Public Function Init_Card() As Integer

 Result = adt8940a1_initial 'initial motion-card

 If Result <= 0 Then

 Init_Card = Result

 Exit Function

 End If

 For i = 1 To MAXAXIS

 set_command_pos 0, i, 0 'set logic pos as 0

 set_actual_pos 0, i, 0 'set real pos as 0

 set_startv 0, i, 1000 'set start-speed

 set_speed 0, i, 2000 'set motion-speed

 set_acc 0, i, 625 'set acceleration

 Next i

 Init_Card = Result

End Function
'/********************get version************************

' get library version and hardware version

' para：libVer－library version,hardwareVer - hardware version

'***

Public Function Get_Version(libver As Double, hardwarever As Double) As Integer
 Dim ver As Integer

 ver = get_lib_version(0)

 libver = (ver)

 hardwarever = get_hardware_ver(0)

End Function
''/**********************set speed***********************

'' according as para,judge whether is constant-speed
' set start-speed ,motion-speed and acceleration

' para：axis -axis number

' startv -start - speed

' speed -motion - speed

' Add -acceleration

' Return=0 correct，Return=1 wrong

'***

Public Function Setup_Speed(ByVal axis As Integer, ByVal startv As Long, ByVal speed As Long, ByVal add As Long, ByVal tacc As Double) As Integer
 If (startv - speed >= 0) Then

 Result = set_startv(0, axis, startv)

 set_speed 0, axis, startv

' set_symmetry_speed 0, axis, startv, startv, tacc

 Else

 Result = set_startv(0, axis, startv)

 set_speed 0, axis, speed

 set_acc 0, axis, add / 125

' set_symmetry_speed 0, axis, startv, speed, tacc

 End If

End Function
'/*********************single-axis motion**********************

' drive one axis motion

' para： axis-axis number，value-pulse of motion

' Return=0 correct，Return=1 wrong

'***/

Public Function Axis_Pmove(ByVal axis As Integer, ByVal pulse As Long) As Integer

 Result = pmove(0, axis, pulse)

 Axis_Pmove = Rresult

End Function
'/*******************2-axis interpolation********************

' any 2-axis linear interpolation

' para：axis1,axis2-axis number、value1,value2-pulse of interpolation

' Return=0 correct，Return=1 wrong

'***/

Public Function Interp_Move2(ByVal axis1 As Integer, ByVal axis2 As Integer, ByVal pulse1 As Long, ByVal pulse2 As Long) As Integer
 Result = inp_move2(0, axis1, axis2, pulse1, pulse2)

 Interp_Move2 = Result

End Function
'/*******************3-axis interpolation********************

' any 3-axis linear interpolation

' para：axis1,axis2,axis3-axis number、value1,value2,value3-pulse of interpolation

' Return=0 correct，Return=1 wrong

'***/
Public Function Interp_Move3(ByVal axis1 As Integer, ByVal axis2 As Integer, ByVal axis3 As Integer, ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal pulse3 As Long) As Integer
 Result = inp_move3(0, axis1, axis2, axis3, pulse1, pulse2, pulse3)

 Interp_Move3 = Result

End Function
'/*******************4-axis interpolation****************************

' 4-axis interpolation motion

' para：value1,value2,value3,value4-pulse of interpolation

' Return=0 correct，Return=1 wrong

'***/

Public Function Interp_Move4(ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal pulse3 As Long, ByVal pulse4 As Long) As Integer

 Result = inp_move4(0, pulse1, pulse2, pulse3, pulse4)

 Interp_Move4 = Result

End Function
'/*****************stop motion******************************

' stop motion in the way of sudden or decelerate

' para：axis-axis number、mode-stop mode(0－sudden stop, 1－decelerate stop)

' Return=0 correct，Return=1 wrong

'**/

Public Function StopRun(ByVal axis As Integer, ByVal mode As Integer) As Integer
 If mode = 0 Then

 Result = sudden_stop(0, axis)

 Else

 Result = dec_stop(0, axis)

 End If
End Function
'/*******************set position counter*******************************

' set logic-pos or real-pos

' para：axis-axis number,pos-the set value

' mode 0－set logic pos,non 0－set real pos

' Return=0 correct，Return=1 wrong

'**/

Public Function Setup_Pos(ByVal axis As Integer, ByVal pos As Long, ByVal mode As Integer) As Integer
 If mode = 0 Then

 Result = set_command_pos(0, axis, pos)

 Else

 Result = set_actual_pos(0, axis, pos)

 End If

End Function
'/*****************get information of motion*****************************

' get logical-pos,actual-pos and motion-speed

' para：axis-axis number,LogPos-logic pos,ActPos-real pos,Speed-motion speed

' Return=0 correct，Return=1 wrong

'**/

Public Function Get_CurrentInf(ByVal axis As Integer, LogPos As Long, actpos As Long, speed As Long) As Integer
 Result = get_command_pos(0, axis, LogPos)

 get_actual_pos 0, axis, actpos

 get_speed 0, axis, speed

 Get_CurrentInf = Result

End Function
'/*****************get status of motion**************************

' get status of single-axis motion or interpolation

' para：axis-axis number，value-Indicator of motion status(0：Drive completed,Non-0: Drive in process)

' mode(0-single-axis motion，1－interpolation)

' Return=0 correct，Return=1 wrong

'**/

Public Function Get_MoveStatus(ByVal axis As Integer, value As Long, ByVal mode As Integer) As Integer
 If mode = 0 Then

 GetMove_Status = get_status(0, axis, value)

 Else

 GetMove_Status = get_inp_status(0, value)

 End If

End Function
'/***********************read input*******************************

' read status of input

' para：number-input port(0 ~ 39)

' Return：0 － low level，1 － high level，-1 － error

'**/

Public Function Read_Input(ByVal number As Integer) As Integer

 Read_Input = read_bit(0, number)

End Function
'/*********************output******************************

' set status 0f output

' para： number-output port(0 ~ 15),value 0-low level、1－high level

' Return=0 correct，Return=1 wrong

'**/

Public Function Write_Output(ByVal number As Integer, ByVal value As Integer) As Integer
 Write_Output = write_bit(0, number, value)

End Function
'/********************set pulse mode**********************

' set the mode of pulse output

' para：axis-axis number， value-pulse mode 0－pulse+pulse 1－pulse + direction

' Return=0 correct，Return=1 wrong

' Default mode: Pulse + direction, with positive logic pulse

' and positive logic direction input signal

'

'***/

Public Function Setup_PulseMode(ByVal axis As Integer, ByVal value As Integer) As Integer
 Setup_PulseMode = set_pulse_mode(0, axis, value, 0, 0)

End Function
'/********************set nLMT mode**********************

' set the mode of nLMT signal input along positive/ negative direction

' para： axis－axis number

' value1 0 - positive limit effective 1: positive limit ineffective

' value2 0: negative limit effective 1: negative limit ineffective

' logic 0: low level effective 1: high level ineffective

' Default mode: Apply positive and negative limits with low level

' Return 0：Correct 1： Wrong

' ***/

Public Function Setup_LimitMode(ByVal axis As Integer, ByVal value1 As Integer, ByVal value2 As Integer, ByVal logic As Integer) As Integer

 Setup_LimitMode = set_limit_mode(0, axis, value1, value2, logic)

End Function
'/********************set stop0 mode**********************
' Set mode of stop0 input signal

' para： axis－axis number

' value 0－ineffective 1－effective

' logic 0－low level effective 1－high level effective

' Defaule: ineffective

' Return 0：Correct 1： Wrong

' ***/

Public Function Setup_Stop0Mode(ByVal axis As Integer, ByVal value As Integer, ByVal logic As Integer) As Integer
 Setup_Stop0Mode = set_stop0_mode(0, axis, value, logic)

End Function
'/********************set stop1 mode**********************

' Set mode of stop1 input signal

' para： axis－axis number

' value 0－ineffective 1－effective

' logic 0－low level effective 1－high level effective

' Defaule: ineffective

' Return 0：Correct 1： Wrong

' ***/

Public Function Setup_Stop1Mode(ByVal axis As Integer, ByVal value As Integer, ByVal logic As Integer) As Integer
 Setup_Stop1Mode = set_stop1_mode(0, axis, value, logic)

End Function
'/********************set hardware-stop mode **********************

' set mode whether Hardware stop is effective,if hareware-version is 1 ,

' motion-card havn't this function

' para： value 0－ineffective 1－effective

' logic 0－low level effective 1－high level effective

' Defaule: ineffective

' Return 0：Correct 1： Wrong

' Hardware stop signals are assigned to use the 34 pin at the P3 terminal panel (IN31)

' ***/
Public Function Setup_HardStop(ByVal value As Integer, ByVal logic As Integer) As Integer
 Setup_HardStop = set_suddenstop_mode(0, value, logic)

End Function
'/********************set delay**********************
' set the time of delay,if hareware-version is 1 ,motion-card havn't this function

' para： time - time of delay(unit is us)

' Return 0：Correct 1： Wrong

' ***/
Public Function Setup_Delay(ByVal time As Long) As Integer
 Setup_Delay = set_delay_time(0, time * 8)
End Function
'/********************get delay status **********************
' get the status of delay ,if hareware-version is 1 ,motion-card havn't this function
' Return 0: delay stop 1: delay in process
' ***/
Public Function Get_DelayStatus() As Integer
 Get_DelayStatus = get_delay_status(0)
End Function
'/************ Symmetrical relative movement of single-axis ***************

'function: Refer to the current position and perform quantitative movement in the symmetrical

'acceleration/deceleration

'para:

' axis---axis number

' pulse --pulse

' lspd--- Low speed

' hspd--- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'***/

Public Function Sym_RelativeMove(ByVal axis As Integer, ByVal pulse As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer
 Result = symmetry_relative_move(0, axis, pulse, lspd, hspd, tacc)
 Symmetry_RelativeMove = Result

End Function
'/************** Symmetrical absolute movement of single-axis ***********

'function: Refer to the position of zero point and perform quantitative movement in the symmetrical

'acceleration/deceleration

'para:

' axis ---axis number

' pulse --pulse

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0: correct 1: wrong

'***/

Public Function Sym_AbsoluteMove(ByVal axis As Integer, ByVal pulse As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer

 Result = symmetry_absolute_move(0, axis, pulse, lspd, hspd, tacc)

 Symmetry_AbsoluteMove = Result

End Function
'/***** Relative movement of two-axis symmetrical linear interpolation ********

'function: Refer to current position and perform linear interpolation in symmetrical

'acceleration/deceleration

'para:

' axis1---axis number1

' axis2---axis number2

' pulse1-- pulse 1

' pulse2-- pulse 2

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'**/

Public Function Sym_RelativeLine2(ByVal axis1 As Integer, ByVal axis2 As Integer, ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer
 Result = symmetry_relative_line2(0, axis1, axis2, pulse1, pulse2, lspd, hspd, tacc)
 Symmetry_RelativeLine2 = Result
End Function
'/****** Two axes symmetric linear interpolation absolute moving ********

'function: Refer to the position of zero point and perform linear interpolation in symmetrical

'acceleration/deceleration

'para:

' axis1---axis number1

' axis2---axis number2

' pulse1—pulse of axis 1

' pulse2-- pulse of axis 2

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'**/

Public Function Sym_AbsoluteLine2(ByVal axis1 As Integer, ByVal axis2 As Integer, ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer

 Result = symmetry_absolute_line2(0, axis1, axis2, pulse1, pulse2, lspd, hspd, tacc)

 Symmetry_AbsoluteLine2 = Result
End Function
'/***** Three axes symmetric linear interpolation relative moving ******

'function: Refer to current position and perform linear interpolation in symmetric

'acceleration/deceleration

'para:

' axis1---axis number1

' axis2---axis number2

' axis3---axis number3

' pulse1-- pulse of axis 1

' pulse2-- pulse of axis 2

' pulse3-- pulse of axis 3

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'**/

Public Function Sym_RelativeLine3(ByVal axis1 As Integer, ByVal axis2 As Integer, ByVal axis3 As Integer, ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal pulse3 As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer
 Result = symmetry_relative_line3(0, axis1, axis2, axis3, pulse1, pulse2, pulse3, lspd, hspd, tacc)
 Symmetry_RelativeLine3 = Result
End Function

'/******Three axes symmetric linear interpolation absolute moving **********

'function: Refer to the position of zero point and perform linear interpolation in symmetric

'acceleration/deceleration.

'para:

' axis1---axis number1

' axis2---axis number2

' axis3---axis number3

' pulse1-- pulse of axis 1

' pulse2-- pulse of axis 2

' pulse3-- pulse of axis 3

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'**/

Public Function Sym_AbsoluteLine3(ByVal axis1 As Integer, ByVal axis2 As Integer, ByVal axis3 As Integer, ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal pulse3 As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer

 Result = symmetry_absolute_line3(0, axis1, axis2, axis3, pulse1, pulse2, pulse3, lspd, hspd, tacc)

 Symmetry_AbsoluteLine3 = Result

End Function

'/***** Four axes symmetric linear interpolation relative moving ******

'function: Refer to current position and perform linear interpolation in symmetric

'acceleration/deceleration

'para:

' pulse1-- pulse of axis 1

' pulse2-- pulse of axis 2

' pulse3-- pulse of axis 3

' pulse4-- pulse of axis 4

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'**/

Public Function Sym_RelativeLine4(ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal pulse3 As Long, ByVal pulse4 As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer
 Result = symmetry_relative_line4(0, pulse1, pulse2, pulse3, pulse4, lspd, hspd, tacc)
 Symmetry_RelativeLine4 = Result
End Function
'/******Four axes symmetric linear interpolation absolute moving **********

'function: Refer to the position of zero point and perform linear interpolation in symmetric

'acceleration/deceleration.

'para:

' pulse1-- pulse of axis 1

' pulse2-- pulse of axis 2

' pulse3-- pulse of axis 3

' pulse4-- pulse of axis 4

' lspd --- Low speed

' hspd --- High speed

' tacc--- Time of acceleration (Unit: sec)

'return value 0：correct 1：wrong

'**/

Public Function Sym_AbsoluteLine4(ByVal pulse1 As Long, ByVal pulse2 As Long, ByVal pulse3 As Long, ByVal pulse4 As Long, ByVal lspd As Long, ByVal hspd As Long, ByVal tacc As Double) As Integer
 Result = symmetry_absolute_line4(0, pulse1, pulse2, pulse3, pulse4, lspd, hspd, tacc)
 Symmetry_AbsoluteLine4 = Result
End Function
'/************ Quantitative drive function of external signal *******

'function: Quantitative drive function of external signal

'para:

' cardno card number

' axis axis number

' pulse pulse

'Return 0：Correct 1：Wrong

'**/

Public Function Manu_Pmove(ByVal axis As Integer, ByVal pulse As Long) As Integer
 Result = manual_pmove(0, axis, pulse)
 Manu_Pmove = Result

End Function

'/************* Continuous drive function of external signal ********

'function: Continuous drive function of external signal

'para:

' cardno card number

' axis axis number

'Return 0：Correct 1：Wrong

'**/

Public Function Manu_Continue(ByVal axis As Integer) As Integer
 Result = manual_continue(0, axis)
 Manu_Continue = Result
End Function

'/*********** Shut down the enabling of external signal drive ********

'function: Shut down the enabling of external signal drive

'para:

' cardno card number

' axis axis number

'Return 0：Correct 1：Wrong

'**/

Public Function Disable_Manu(ByVal axis As Integer) As Integer
 Result = manual_disable(0, axis)
 Disable_Manu = Result
End Function

'/*********************** set lockmode ***************************

'function:lock the logical position and real position for all axis

'para:

' axis—reference axis

' mode--set lock mode |0:inefficacy

' |1:efficiency

' regi—register mode |0:logical position

' |1:real position

' logical—level signal |0: from high to low

' |1:from low to high

'retutrn 0: correct 1: wrong

'Note: Use IN signal of specific axis as the trigger signal

'**/

Public Function Get_LockStatus(ByVal axis As Integer, status As Integer) As Integer
 Result = get_lock_status(0, axis, status)
 Get_LockStatus = Result
End Function

'/******************** get synchronous action state ***********************

'function:get synchronous action state

'para:

' axis axis number

' status— 0|haven't run synchronous

' 1|run synchronous

'retutrn 0: correct 1: wrong

'Note: This function could tell whether the position lock has been executed

'**/

Public Function Setup_LockPosition(ByVal axis As Integer, ByVal mode As Integer, ByVal regi As Integer, ByVal logical As Integer) As Integer

 Result = set_lock_position(0, axis, mode, regi, logical)

 Setup_LockPosition = Result

End Function

'/**********************get lock position************************

'Function: Get the locked position

'para:

' axis axis number

' pos lock position

'Return 0：Correct 1：Wrong

'**/

Public Function Get_LockPosition(ByVal axis As Integer, pos As Long) As Integer
 Result = get_lock_position(0, axis, pos)

 Get_LockPosition = Result

End Function

'/**********************clean lock position************************

'Function: Clean the locked position

'para:

' axis axis number

'Return 0：Correct 1：Wrong

'**/

Public Function Clr_LockStatus(ByVal axis As Integer) As Integer
 Result = clr_lock_status(0, axis)

 Clr_LockStatus = Result

End Function
1.3 Function realization module

1.31 Interface design
[image: image24.jpg]~ ADT-8940A1 DENO

ADT-8940A1 DENO Library Ver: 110
Hardvare Ver: 1.1
start run delay.
meds || EEEEEE add Add tine delay tine: [0 us

X 1000 2000 1500 0.1 set delay| [delay status
1000 2000 1500 -1 prove stop conp-single-nave
z oo 2000 1500 o1 inpnove | base para | comp-lineinp-move

& ‘mnn ‘znnn ‘mnn [o.1

i

pos clean| 10 test [[external drive
I~ Manu_Prove

logical | actual | run Manual Disable
axis | pulse 1o el aony |wime | - | stopd] stopt

~x [[foooo [0 0 0 I [- | rleskees
rx |foooss |9 o [T T T |
o ’W 0 0 0 r - - - lock pos
ra ’W 0 0 0 - - - = clean lock

Introduction:
(1) Speed setting part—used to set starting speed, motion speed and acceleration of every axis; position setting—used to set drive pulse for every axis; drive information—used to real-time display logical position, real position and operation speed of every axis;
(2) Motion object—users determine axis joining simultaneous motion or interpolation by selecting drive objects;
(3) Simultaneous movement—Used to send single-axis drive commands to all the axis of the selected drive object; interpolation –Used to send interpolation command to all the axis of the selected drive object; stop—stop all the pulse outputs of all axis.
All the above data take pulse as the unit.
1.3.2 Initialization codes are inside the window loading event, with the following contents:

Private Sub Init_Board()
 Dim count As Integer

 count = Init_Card

 If count < 1 Then MsgBox "Fail to initial ADT-8940A1 motion-card"

 Get_Version g_nLibVer, g_nHardwareVer

 CardVer.Caption = "Library Ver：" + CStr(g_nLibVer) + Chr(10) + "Hardware Ver：" + CStr(g_nHardwareVer)

End Sub
1.3.3 Simultaneous movement codes are inside the click event of axisPmove button, whereby various selected objects send corresponding drive commands. The four check boxes (to select objects) are respectively named as X, Y, Z and A, subject with the following code:

 Private Sub AxisPmove_Click()
'*****************judge speed whether is out of range************************

' The range of start-speed and run-speed (1～2M)

' The range of add(1×125～64000×125)

'***
 If m_bX.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Axis_Pmove 1, m_nPulse(0).Text

 End If

 If m_bY.value = vbChecked Then

 Setup_Speed 2, m_nStartV(1).Text, m_nSpeed(1).Text, m_nAdd(1).Text, m_dTacc(1).Text

 Axis_Pmove 2, m_nPulse(1).Text

 End If

 If m_bZ.value = vbChecked Then

 Setup_Speed 3, m_nStartV(2).Text, m_nSpeed(2).Text, m_nAdd(2).Text, m_dTacc(2).Text

 Axis_Pmove 3, m_nPulse(2).Text

 End If

 If m_bA.value = vbChecked Then

 Setup_Speed 4, m_nStartV(3).Text, m_nSpeed(3).Text, m_nAdd(3).Text, m_dTacc(3).Text

 Axis_Pmove 4, m_nPulse(3).Text

 End If
End Sub
1.3.4 Interpolation codes are inside the click event of InterpMove button, whereby various selected objects send corresponding drive commands. The four check boxes (to select objects) are respectively named as X, Y, Z and A, subject with the following code:

Private Sub InterpMove_Click()

'*****************judge speed whether is out of range************************'

' The range of start-speed and run-speed(1～2M)

' The range of add (1×125～64000×125)

'***

'***************************inpterpolation***************************

'*********************************4-axis linear-inpterpolation**********************************

 If m_bX.value = vbChecked And m_bY.value = vbChecked And m_bZ.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move4 m_nPulse(0).Text, m_nPulse(1).Text, m_nPulse(2).Text, m_nPulse(3).Text

'*********************************3-axis linear-inpterpolation**********************************

'********************************XYZ********************************

 ElseIf m_bX.value = vbChecked And m_bY.value = vbChecked And m_bZ.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move3 1, 2, 3, m_nPulse(0).Text, m_nPulse(1).Text, m_nPulse(2).Text

'********************************XYW********************************

 ElseIf m_bX.value = vbChecked And m_bY.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move3 1, 2, 4, m_nPulse(0).Text, m_nPulse(1).Text, m_nPulse(3).Text

'********************************XZW********************************

 ElseIf m_bX.value = vbChecked And m_bZ.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move3 1, 3, 4, m_nPulse(0).Text, m_nPulse(2).Text, m_nPulse(3).Text

 '********************************YZW********************************

 ElseIf m_bY.value = vbChecked And m_bZ.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 2, m_nStartV(1).Text, m_nSpeed(1).Text, m_nAdd(1).Text, m_dTacc(1).Text

 Interp_Move3 2, 3, 4, m_nPulse(1).Text, m_nPulse(2).Text, m_nPulse(3).Text

'********************************2-axis linear-inpterpolation********************************

 '********************************XY********************************

 ElseIf m_bX.value = vbChecked And m_bY.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move2 1, 2, m_nPulse(0).Text, m_nPulse(1).Text

'********************************XZ********************************

 ElseIf m_bX.value = vbChecked And m_bZ.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move2 1, 3, m_nPulse(0).Text, m_nPulse(2).Text

'********************************XW********************************

 ElseIf m_bX.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 1, m_nStartV(0).Text, m_nSpeed(0).Text, m_nAdd(0).Text, m_dTacc(0).Text

 Interp_Move2 1, 4, m_nPulse(0).Text, m_nPulse(3).Text

 '********************************YZ********************************

 ElseIf m_bY.value = vbChecked And m_bZ.value = vbChecked Then

 Setup_Speed 2, m_nStartV(1).Text, m_nSpeed(1).Text, m_nAdd(1).Text, m_dTacc(1).Text

 Interp_Move2 2, 3, m_nPulse(1).Text, m_nPulse(2).Text

'********************************YW********************************

 ElseIf m_bY.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 2, m_nStartV(1).Text, m_nSpeed(1).Text, m_nAdd(1).Text, m_dTacc(1).Text

 Interp_Move2 2, 4, m_nPulse(1).Text, m_nPulse(3).Text

'********************************ZW********************************

 ElseIf m_bZ.value = vbChecked And m_bA.value = vbChecked Then

 Setup_Speed 3, m_nStartV(2).Text, m_nSpeed(2).Text, m_nAdd(2).Text, m_dTacc(2).Text

 Interp_Move2 3, 4, m_nPulse(2).Text, m_nPulse(3).Text

 Else

 MsgBox "please choose the axis", , "Notice"

 End If

End Sub
1.4 Monitoring module

The monitoring module is used to real-time get motion information of all the axes and display motion information, at the same time of controlling them in motion process without any new motion commands. This module is completed by the timer event, with the following codes:
Private Sub Timer1_Timer()

 Dim nLogPos As Long 'logic pos

 Dim nActPos As Long 'real pos

 Dim nSpeed As Long 'run-speed

 Dim nStatus(4) As Long 'status of motion

 For i = 1 To 4

 Get_CurrentInf i, nLogPos, nActPos, nSpeed

 m_nLogPos(i - 1).Caption = nLogPos

 m_nActPos(i - 1).Caption = nActPos

 m_nRunSpeed(i - 1).Caption = nSpeed

 Get_MoveStatus i, nStatus(i - 1), 0

'Check signal of limit、stop0 and stop1

'LMT+(XLMT-: 0,YLMT- :6,ZLMT-:12,WLMT- :18)

 If Read_Input((i - 1) * 6) = 0 Then

 m_bPLimit(i - 1).value = 1

 Else

 m_bPLimit(i - 1).value = 0

 End If

'LMT-(XLMT+ : 1,YLMT+ :7,ZLMT+ :13,WLMT+ :19)

 If Read_Input((i - 1) * 6 + 1) = 0 Then

 m_bNLimit(i - 1).value = 1

 Else

 m_bNLimit(i - 1).value = 0

 End If

 'stop0(XSTOP0 : 2,YSTOP0 :8,ZSTOP0 :14,WSTOP0 :20)

 If Read_Input((i - 1) * 6 + 2) = 0 Then

 m_bStop0(i - 1).value = 1

 Else

 m_bStop0(i - 1).value = 0

 End If

'stop1(XSTOP1 : 3,YSTOP1 :9,ZSTOP1 :15,WSTOP1 :21)

 If Read_Input((i - 1) * 6 + 3) = 0 Then

 m_bStop1(i - 1).value = 1

 Else

 m_bStop1(i - 1).value = 0

 End If

 Next i

 If nStatus(0) = 0 And nStatus(1) = 0 And nStatus(2) = 0 And nStatus(3) = 0 Then

 'is running

 AxisPmove.Enabled = True

 InterpMove.Enabled = True

 BaseparaSet.Enabled = True

 ClearPos.Enabled = True

 ComeMove.Enabled = True

 LineInpMove.Enabled = True

 IOTest.Enabled = True

 Else

 'motion is finished or stopped

 AxisPmove.Enabled = False

 InterpMove.Enabled = False

 BaseparaSet.Enabled = False

 ClearPos.Enabled = False

 ComeMove.Enabled = False

 LineInpMove.Enabled = False

 IOTest.Enabled = False

 End If
End Sub
1.5 Stop module

This module is mainly used to control unexpected events during drive process and will immediately stop drive of all the axes. Codes of this stop module are within the click event of CmdStop button, with the following codes:

Private Sub CmdStop_Click()

 For i = 1 To 4

 StopRun i, 0

 Next i

End Sub
(VC PROGRAMMING SAMPLES

2.1 Preparation

(1) Create a new item and save as “VCExample.dsw”;
(2) Load the static library ADT8940A1.lib into the item following the above-introduced method;

2.2 Movement control module

(1) Add a new category in the item and save the header as “CtrlCard.h” and source file as “CtrlCard.cpp”;

(2) At first, within the movement control module self-define initialization functions of the movement control card and initialize library functions to be sealed into initialization functions;

(3) Further self-define relevant movement control functions such as speed setting function, single-axis motion function, and interpolation function;

(4) Source codes of the header CtrlCard.h are as follows:
ifndef __ADT8940A1__CARD__

define __ADT8940A1__CARD__

/*********************** Motion control module ********************

 For developing an application system of great generality,

 extensibility and convenient maintenance easily and swiftly,

 we envelop all the library functions by category basing on

 the card function library

**/

#define MAXAXIS 4 //axis number

class CCtrlCard

{

public:

int Get_DelayStatus();

int Setup_Delay(long time);

int Setup_HardStop(int value, int logic);

int Setup_Stop1Mode(int axis, int value, int logic);

int Setup_Stop0Mode(int axis, int value, int logic);

int Setup_LimitMode(int axis, int value1, int value2, int logic);

int Setup_PulseMode(int axis, int value);

void Get_Version(float &LibVer, float &HardwareVer);

int Setup_Pos(int axis, long pos, int mode);

int Write_Output(int number, int value);

int Read_Input(int number);

int Get_CurrentInf(int axis, long &LogPos, long &ActPos, long &Speed);

int Get_Status(int axis, int &value, int mode);

int StopRun(int axis, int mode);

int Interp_Move4(long value1, long value2, long value3, long value4);

int Interp_Move3(int axis1, int axis2, int axis3, long value1, long value2, long value3);

int Interp_Move2(int axis1, int axis2, long value1, long value2);

int Axis_Pmove(int axis ,long value);

int Setup_Speed(int axis ,long startv ,long speed ,long add);

int Init_Board();

int Sym_RelativeMove(int axis, long pulse, long lspd ,long hspd, double tacc);

int Sym_AbsoluteMove(int axis, long pulse, long lspd ,long hspd, double tacc);

int Sym_RelativeLine2(int axis1, int axis2, long pulse1, long pulse2, long lspd ,long hspd, double tacc);

int Sym_AbsoluteLine2(int axis1, int axis2, long pulse1, long pulse2, long lspd ,long hspd, double tacc);

int Sym_RelativeLine3(int axis1, int axis2, int axis3, long pulse1, long pulse2, long pulse3, long lspd ,long hspd, double tacc);

int Sym_AbsoluteLine3(int axis1, int axis2, int axis3, long pulse1, long pulse2, long pulse3, long lspd ,long hspd, double tacc);

int Sym_AbsoluteLine4(long pulse1, long pulse2, long pulse3, long pulse4,long lspd ,long hspd, double tacc);

int Sym_RelativeLine4(long pulse1, long pulse2, long pulse3, long pulse4,long lspd ,long hspd, double tacc);

int Get_OutNum(int number);

int Manu_Pmove(int axis, long pulse);

 int Manu_Continue(int axis);

 int Manu_Disable(int axis);

int Setup_LockPosition(int axis,int mode,int regi,int logical);

int Get_LockStatus(int axis,int &v);

int Get_LockPosition(int axis,long &pos);

int Clr_LockPosition(int axis);

CCtrlCard();

int Result; //return value

}

;# endif
(5) Source codes of the source file CtrlCard.cpp are as follows:
include "stdafx.h"

include "ADT8940A1.h"

include "CtrlCard.h"

include "VCExample.h"

extern int g_CardVer;

CCtrlCard::CCtrlCard()

{

}
/******************* Initialization function **

'This function contain those library functions frequently used in control card initialization, which is the foundation to call other functions and must be firstly called in this example program.

'Return <=0 means initialization failure and >0 means initialization success

***/

int CCtrlCard::Init_Board()

{

Result = adt8940a1_initial() ; //intiial motion-card

if (Result <= 0) return Result;

 for (int i = 1; i<=MAXAXIS; i++)

{

 //set limit mode，positive limit and negative limit is effective,low level is effective

 set_limit_mode (0, i, 0, 0, 0);

 set_command_pos (0, i, 0); //set logic pos as 0

 set_actual_pos (0, i, 0); //set real pos as 0

 set_startv (0, i, 1000); //set start-speed

 set_speed (0, i, 1000); //set motion-speed

 set_acc(0, i, 625); //set acceleration

 }
return 1;

}

/**********************set speed***********************

 according as para,judge whether is constant-speed

 set start-speed ,motion-speed and acceleration

 para：axis -axis number

 startv -start-speed

 speed -motion-speed

 add -acceleration

Return=0 correct，Return=1 wrong

***/

int CCtrlCard::Setup_Speed(int axis, long startv, long speed, long add)

{

if (startv - speed >= 0) //constant-speed motion

{

Result = set_startv(0, axis, startv);

set_speed (0, axis, startv);

}

else //Trapezoidal acceleration/ deceleration

{

Result = set_startv(0, axis, startv);

set_speed (0, axis, speed);

set_acc (0, axis, add/125);

}

return Result;

}
/********************* Single-axis motion function**

This function is used to drive movement of a single axis

Return =0 means success, and Return =1 means error
***/

int CCtrlCard::Axis_Pmove(int axis, long value)

{

Result = pmove(0, axis, value);

return Result;

}

/******************* Any 2-axis interpolation function**********************

This function is used to drive any 2 axis to carry on linear interpolation
Return =0 means success, and Return =1 means error

***/
int CCtrlCard::Interp_Move2(int axis1, int axis2, long value1, long value2)

{

Result = inp_move2(0, axis1, axis2, value1, value2);

return Result;

}

/******************* Any 3-axis interpolation function***********************

This function is used to drive any 3 axis to carry on linear interpolation

Return =0 means success, and Return =1 means error

***/
int CCtrlCard::Interp_Move3(int axis1, int axis2, int axis3, long value1, long value2, long value3)

{

Result = inp_move3(0, axis1, axis2, axis3, value1, value2, value3);

return Result;

}

/******************* 4-axis interpolation function****************************

This function is used to drive the 4 axis to carry on linear interpolation

Return =0 means success, and Return =1 means error
**/
int CCtrlCard::Interp_Move4(long value1, long value2, long value3, long value4)

{

Result = inp_move4(0, value1, value2, value3, value4);

return Result;

}

/***************** Get information of movement*********************************

This function is used to feedback the current logic position, real position and motion speed of the selected axis

Return =0 means success, and Return =1 means error

***/

int CCtrlCard::Get_CurrentInf(int axis, long &LogPos, long &ActPos, long &Speed)

{

Result = get_command_pos(0, axis, &LogPos);

get_actual_pos(0, axis, &ActPos);

get_speed(0, axis, &Speed);

return Result;
}

/***************** Stop motion function***

This function provides either sudden stop mode or deceleration stop mode

Return =0 means success, and Return =1 means error

***/
int CCtrlCard::StopRun(int axis, int mode)

{

if (mode == 0)

 Result = sudden_stop(0, axis); //Sudden stop

 else

 Result = dec_stop(0, axis); //Deceleration stop

 return Result;

}

/*****************Get motion status***

This function is used to get single-axis drive status or interpolation drive status
Return =0 means success, and Return =1 means error

***/
int CCtrlCard::Get_Status(int axis, int &value, int mode)

{

if (mode==0) //Get single-axis motion status

Result=get_status(0,axis,&value);

Else //Get motion status of interpolation

Result=get_inp_status(0,&value);

return Result;

}
2.3 Function realization module

2.3.1 Interface design

[image: image25.jpg]ADT-8940A1 DENO

ADT-8940A1 DEMO e
i

e | stort spoea] rm pond | wta | wtieine | [L w
x| [0 [eu00 [i500 o1 set delay| [delay status
v | [ro0 [o000 [i500 o1

o |
: |l f I f o e
s | (w00 [eo00 [1500 o1 clean pos| | 10 test || ctemmal drive

I Man_Pnave

axis | pulse [logic pos | actual pos |run speed | LNT- | LT+ [STOPO|STOPL st man
~x |[tooongr |0 0 o AR

vy [tooooa |0 0 o -l Fr Lock node
™ 1 [tooooo 0 0 o - rlr|r lock pos
& [0 |0 0 o R clean lock

Remark:
(1) Speed setting part—used to set starting speed, drive speed and acceleration of every axis; position setting—used to set drive pulse for every axis; motion information—used to real-time display logical position, real position and motion speed of every axis;

(2) Drive object—users determine axis joining simultaneous movement or interpolation by selecting drive objects;

(3) Simultaneous movement—Used to send single-axis drive commands to all the axis of the selected drive object; interpolation –Used to send interpolation command to all the axis of the selected drive object; stop—stop all the pulse outputs of all axis.

All the above data take pulse as the unit.

2.3.2 Initialization codes for the movement control card are inside window initialization, while users shall supplement the following codes:

int i=g_CtrlCard.Init_Board();

//*************initial 8940A1 motion-card**************

if (i <= 0)

{

 MessageBox("Fail to initial motion-card!");

if (i==0)

{

MessageBox("NO installation of ADT8940A1!");

}

if(i==-1)

{

MessageBox("no installation of service!");

}

if(i==-2)

{

MessageBox("PCI bus failure!");

}

}

 else

 MessageBox ("Succeed in initial motion-card!");

//*************Get Version**************

float LibVer; //Library Version

float HardwareVer; //Hardware Version

g_CtrlCard.Get_Version(LibVer,HardwareVer);

CStatic *lbl;

CString str;

lbl=(CStatic*)GetDlgItem(IDC_INFO_VER);

str.Format("Library Ver:%1.1f\nHardware Ver: %1.1f",LibVer,HardwareVer);

lbl->SetWindowText(str);
//******* set start-speed 1000

m_nStartvX = 1000;

m_nStartvY = 1000;

m_nStartvZ = 1000;

m_nStartvA = 1000;

//*********set run-speed 2000********

m_nSpeedX = 2000;

m_nSpeedY = 2000;

m_nSpeedZ = 2000;

m_nSpeedA = 2000;

//*********set add 1500**********

m_nAddX = 1500;

m_nAddY = 1500;

m_nAddZ = 1500;

m_nAddA = 1500;

//********set pulse 100000******

m_nPulseX = 100000;

m_nPulseY = 100000;

m_nPulseZ = 100000;

m_nPulseA = 100000;
//***********set add time***************

m_dTaccX = 0.1;

m_dTaccY = 0.1;

m_dTaccZ = 0.1;

m_dTaccA = 0.1;
//*********set delay time 0************

m_nDelayTime = 0;

 UpdateData(FALSE);

//***********set time*************

SetTimer(MAINTIMER,100,NULL);
2.3.3 Simultaneous movement codes are inside the click message of Simultaneous movement button and will send various drive commands for various selected targets; the codes are as follows:

void CDEMODlg::OnButtonPmove()
 {

UpdateData(TRUE);

Long Startv[]={m_nStartvX,m_nStartvY,m_nStartvZ,m_nStartvA}; //start-speed

long Speed[]={m_nSpeedX,m_nSpeedY,m_nSpeedZ,m_nSpeedA}; //run-speed

long Add[] ={m_nAddX,m_nAddY,m_nAddZ,m_nAddA}; //add

if(m_bX)

{

 //*************set speed***************//

g_CtrlCard.Setup_Speed(1, m_nStartvX, m_nSpeedX, m_nAddX);

 //*************X axis move***************//

g_CtrlCard.Axis_Pmove(1, m_nPulseX);

}

if(m_bY)

{

 //*************set speed**************//

g_CtrlCard.Setup_Speed(2, m_nStartvY, m_nSpeedY, m_nAddY);

 //*************Y axis move****************//

g_CtrlCard.Axis_Pmove(2, m_nPulseY);

}

if(m_bZ)

{

 //************set speed**************//

g_CtrlCard.Setup_Speed(3, m_nStartvZ, m_nSpeedZ, m_nAddZ);

 //*************Z axis move**************//

g_CtrlCard.Axis_Pmove(3, m_nPulseZ);

}

if(m_bA)

{

 //*************set speed**************//

g_CtrlCard.Setup_Speed(4, m_nStartvA, m_nSpeedA, m_nAddA);

 //*************A axis move***************//

g_CtrlCard.Axis_Pmove(4, m_nPulseA);

}

}
2.3.4 Interpolation codes are inside the click message of the inp_move button and will send various drive commands for various selected targets; the codes are as follows:

void CDEMODlg::OnButtonInpmove ()
{

UpdateData(TRUE);

long startv[]={m_nStartX,m_nStartY,m_nStartZ,m_nStartW};

long Speed[]={m_nXSpeed,m_nYSpeed,m_nZSpeed,m_nWSpeed};

long Add[]={m_nAddX,m_nAddY,m_nAddZ,m_nAddW};

long Pos[]={m_nPosX,m_nPosY,m_nPosZ,m_nPosW};

if(m_bX && m_bY && m_bZ && m_bW){ //Interpolation of the 4 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_CtrlCard.Interp_Move4(Pos[0],Pos[1],Pos[2],Pos[3]);

}

 else if(m_bX && m_bY && m_bZ){ //XYZ Interpolation of 3 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_ctrlCard.Interp_Move3(1,2,3,Pos[0],Pos[1],Pos[2]);

}

 else if(m_bX && m_bY && m_bW){ //XYW Interpolation of 3 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_CtrlCard.Interp_Move3(1,2,4,Pos[0],Pos[1],Pos[3]);

}

 else if(m_bX && m_bZ && m_bW){ //XZW Interpolation of 3 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_CtrlCard.Interp_Move3(1,3,4,Pos[0],Pos[2],Pos[3]);

}

else if(m_bY && m_bZ && m_bW){ //YZW Interpolation of 3 axis

 g_CtrlCard.Setup_Speed(2,startv[1],Speed[1],Add[1]);

g_CtrlCard.Interp_Move3(2,3,4,Pos[1],Pos[2],Pos[3]);

}

 else if(m_bX && m_bY){ //XY Interpolation of 2 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_CtrlCard.Interp_Move2(1,2,Pos[0],Pos[1]);

}

else if(m_bX && m_bZ){ //XZ Interpolation of the 2 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_CtrlCard.Interp_Move2(1,3,Pos[0],Pos[2]);

}

 else if(m_bX && m_bW){ //XW Interpolation of the 2 axis

 g_CtrlCard.Setup_Speed(1,startv[0],Speed[0],Add[0]);

g_CtrlCard.Interp_Move2(1,4,Pos[0],Pos[3]);

}

 else if(m_bY && m_bZ){ //YZ Interpolation of the 2 axis

 g_CtrlCard.Setup_Speed(2,startv[1],Speed[1],Add[1]);

g_CtrlCard.Interp_Move2(2,3,Pos[1],Pos[2]);

}

else if(m_bY && m_bW){ //YW Interpolation of the 2 axis

 g_CtrlCard.Setup_Speed(2,startv[1],Speed[1],Add[1]);

g_CtrlCard.Interp_Move2(2,4,Pos[1],Pos[3]);

}

 else if(m_bZ && m_bW){ //ZW Interpolation of the 2 axis

 g_CtrlCard.Setup_Speed(3,startv[2],Speed[2],Add[2]);

g_CtrlCard.Interp_Move2(3,4,Pos[2],Pos[3]);

}

 }

2.4 Monitoring module

The monitoring module is used to real-time get drive information of all the axes and display movement information, at the same time of controlling them in drive process without any new drive commands. This module is completed through timer messages, with the following codes:

void CDEMODlg::OnTimer(UINT nIDEvent)
{
long log=0,act=0,spd=0;

UINT nID1[]={IDC_POS_LOGX,IDC_POS_LOGY,IDC_POS_LOGZ,IDC_POS_LOGA};

UINT nID2[]={IDC_POS_ACTX,IDC_POS_ACTY,IDC_POS_ACTZ,IDC_POS_ACTA};

UINT nID3[]={IDC_RUNSPEED_X,IDC_RUNSPEED_Y,IDC_RUNSPEED_Z,IDC_RUNSPEED_A};

CStatic *lbl;

CString str;

int status[4];

for (int i=1; i<MAXAXIS+1; i++)

{

g_CtrlCard.Get_CurrentInf(i,log,act,spd); //Get logic-pos ,actual-pos and run-speed

//********display logic-pos********//

lbl=(CStatic*)GetDlgItem(nID1[i-1]);

str.Format("%ld",log);

lbl->SetWindowText(str);

//********display actual-pos********//

lbl=(CStatic*)GetDlgItem(nID2[i-1]);

str.Format("%ld",act);

lbl->SetWindowText(str);

//********display run-speed********//

lbl=(CStatic*)GetDlgItem(nID3[i-1]);

str.Format("%ld",spd);

lbl->SetWindowText(str);

//******Get status******//

g_CtrlCard.Get_Status(i,status[i-1],0);

}

 //******************Check signal*****************

 // XLMT －0 XLMT+ －1

 // XSTOP0 －2 XSTOP1 －3

 // YLMT －6 YLMT+ －7

 // YSTOP0 －8 YSTOP1 －9

 // ZLMT －12 ZLMT+ －13

 // ZSTOP0 －14 ZLMT+ －15

 // ALMT －18 ALMT+ －19

 // ASTOP0 －20 ASTOP1 －21

 //***

UINT nIDIN[]={ IDC_LIMIT_X,IDC_LIMIT_X2, //XLMT+/XLMT-

 IDC_STOP0_X, IDC_STOP1_X ,

 IDC_LIMIT_Y, IDC_LIMIT_Y2, //YLMT+/YLMT-

 IDC_STOP0_Y,IDC_STOP1_X2,

 IDC_LIMIT_Z,IDC_LIMIT_Z2, //ZLMT+/ZLMT-

 IDC_STOP0_Z,IDC_STOP1_Z,

 IDC_LIMIT_A,IDC_LIMIT_A2, //ALMT+/ALMT-

 IDC_STOP0_A,IDC_STOP1_A,

};

int io[]={0,1,2,3,6,7,8,9,12,13,14,15,18,19,20,21};

CButton *btn;

int value;

for (i=0; i<16; i++)

{

value=g_CtrlCard.Read_Input(io[i]); //read input signal

btn=(CButton*)GetDlgItem(nIDIN[i]);

btn->SetCheck(value==0?1:0);

}
 //**************************contorl button****************************

if(status[0]==0 && status[1]==0 && status[2]==0 && status[3]==0)

{

 //****************finished****************

btn=(CButton*)GetDlgItem(IDC_BUTTON_PMOVE);

btn->EnableWindow(TRUE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_INPMOVE);

btn->EnableWindow(TRUE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_CLEARPOS);

btn->EnableWindow(TRUE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_BASEPARA);

btn->EnableWindow(TRUE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_IOTEST);

btn->EnableWindow(TRUE);

btn=(CButton*)GetDlgItem(IDC_LINEINP_MOVE);

btn->EnableWindow(TRUE);

btn=(CButton*)GetDlgItem(IDC_COMP_MOVE);

btn->EnableWindow(TRUE);

}

else

{

 //**********running**********

btn=(CButton*)GetDlgItem(IDC_BUTTON_PMOVE);

btn->EnableWindow(FALSE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_INPMOVE);

btn->EnableWindow(FALSE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_CLEARPOS);

btn->EnableWindow(FALSE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_BASEPARA);

btn->EnableWindow(FALSE);

btn=(CButton*)GetDlgItem(IDC_BUTTON_IOTEST);

btn->EnableWindow(FALSE);

btn=(CButton*)GetDlgItem(IDC_LINEINP_MOVE);

btn->EnableWindow(FALSE);

btn=(CButton*)GetDlgItem(IDC_COMP_MOVE);

btn->EnableWindow(FALSE);

 }

CDialog::OnTimer(nIDEvent);
}
2.5 Stop module

This module is mainly used to control unexpected events during drive process and will immediately stop drive of all the axes. Codes of this stop module are within the click messages of Stop button, with the following codes:
void CDEMODlg::OnButtonStoprun()

{

for (int i = 1; i<= MAXAXIS; i++){

g_CtrlCard.StopRun(i,0);

 }

}
Chapter 11 Normal failures and solutions

· Movement control card detection failure

During use of control card, if encountering failure to detect the control card, users may follow the following items to check:
(1) Check whether drive program for the control card has been installed step by step following installation guide and whether there is the dynamic library file for the control card under the system menu (System32 or System);

(2) Check touch between the movement control card and the slot; users may test it by re-inserting or changing the slot, alternatively, use a rubber to clean dirt on the golden finger of the control card and re-insert;

(3) Under the system equipment manager, check whether there is conflict between the movement control card and other hardware. In case of use of PCI card, users may remove other cards or boards first, such as sound card and network card; in case of PC104 card, users may adjust the dialing switch and reset the base address, while the base address used during card initialization must be same as the actual base address;

(4) Check whether there are any problems with the operating system; users may test it through re-installing other versions of operating systems;

(5) If failing to find the control card after the above steps, users may change the control card for further detection so as to discover whether there is damage with the control card.

MOTOR SERVICE FAILURE

In case the motor breakdowns while the movement control card works normally, users may follow the following points for troubleshooting.
(1) Motor makes no reaction when the movement control card outputs pulses

· Check cable between the control card and the terminal panel;

· Check whether the pulse and direction signal wire of the motor driver has been correctly connected to the terminal panel;

· Check connection of the external power supply for the servo driver;

· Check whether there is alarming status in the servo/ stepping motor driver; in case of any alarm there, follow codes corresponding to alarms to check the reason.

· Check connection to the servo SON and whether there is excitation status in the servo motor ;

· In case of servo motor, check control method of the driver; control card of our company support the Position Control Method.

· Damage to the motor/ driver

(2) Stepping motor makes abnormal noise during service and motor makes obvious out-steps.

· Calculate motor speed and make sure the stepping motor is under 10-15 rounds per second instead of faster speed;

· Check internal obstruction in the mechanical part or resistance to the machine;

· Change to large-moment motors if the current motor is not sufficient;

· Check current and voltage of the driver; current shall be set as 1.2 of the nominated current and supply voltage shall be within the nominated range;

· Check the starting speed of the controller; normal starting speed shall be 0.5-1 and the acceleration/ deceleration time shall be over 0.1 second.

(3) Servo/ stepping motor makes obvious vibration or noises during processing

· Reduce the position ring gain and speed ring gain of the driver while allowed by the positioning precision, if the cause is such ring gains are too big;

· Adjust machine structure if the cause is poor machine rigidity;

· Change to large-moment motors if the current motor is not sufficient;

· Avoid the co-vibration area of the motor or increase partitions so as not to have the speed of stepping motor within the co-vibration area of the motor.

(4) Motor positions inaccurately

· Check whether the mechanic screw pitch and pulses per round comply with the parameters set in the actual application system, i.e., pulse equivalent;

· Enlarge position ring gain and speed ring gain in case of servo motor;

· Check screw gap of the machine in the way of measuring the backward gap of a screw through a micrometer and adjust the screw if there is any gap;

· In case of inaccurate positioning out of regular time or position, check external disturbance signals;

· Check whether it is due to non-powerful motor that there is shaking or out-step.

(5) Motor makes no direction

· Check DR+ DR- cable for connection error or loose connection;

· Make sure the pulse mode applied in the control card comply with the actual driver mode; this control card support either “pulse + direction” or “pulse + pulse” mode.

· Check broken cable or loose connection along the motor cable, in case of stepping motor.

(ABNORMAL SWITCH AMOUNT INPUT

In case some input signals give unusual detection results during system adjusting and running, users may check in accordance with the following methods:

(1) No signal input

· Check whether the wiring is correct according to the above-introduced wiring maps for normal switch and approach switch and ensure the public port for photoelectric coupling of input signals have been connected with anode of internal or external power supply (+12V or 24V);

· Check switch model and wiring method; the input switch for I/O points of our company is of NPN model.

· Check whether there is damage with the photoelectric coupler. In case of normal wiring, input status will not change no matter the input point is broken or closed; users may use multi-use meter to check whether the photoelectric coupler has been broken, and if yes, replace with a new one;

· Check the 12V or 24V power supply to the switch;

· Check whether there is damage to the switch.

(2) Non-continuous signals

· Check whether there is disturbance by detecting signal status in the I/O test interface; in case of disturbance, increase with Model 104 multiple layer capacitor or apply blocking cables;

· If the machine makes obvious shaking or unusual work stop during normal service, check whether there is disturbance to the limit switch signals or the limit switch work reliably;

· Check connection of external cables.

(3) Inaccurate reset

· Too high speed decreases reset speed ;

· Check disturbance source if the problem is there is external disturbance to signals;

· Wrong resetting direction;

· Improper installation position of the reset switch or loose switch

(4) Limit out of use

· Check whether the limit switch still works under the I/O test;

· Too high speed during manual or automatic processing;

· Check disturbance source if the problem is there is external disturbance to signals;

· Wrong manual direction;

· Improper installation position of the reset switch or loose switch

(Abnormal output of switch amount

Abnormal output of switch amount may be checked in the following method:

(1) Abnormal output

· Check whether the wiring is correct following the above-introduced wiring for output points and ensure the output public port (earthing line) has been connected with the earthing line of the to-be-used power supply;

· Check whether there is any damage to the output components;

· Check whether there is damage with the photoelectric coupler. Users may use multi-use meter to check whether the photoelectric coupler has been broken, and if yes, replace with a new one;

· Safety issue. Continuous dioxide (model: IN4007 or IN4001) must be serial connected in case of output with sensitive loading.

(2) Judgment method for improper output

Break the external cable at the output point and connect at the output point a pull-up resistor of around 10K to the power supply, while earthing line of the output must be connected with GND of the power supply; then users use the red pen of a multi-use meter to touch the 12V anode, and black pen to touch the signal output port, at the same time of using hand to touch the button on the test interface to see whether there is voltage output; in case of any voltage output, check the external circuit, otherwise check connection to the public port of boards/ cards and internal photoelectric couplers.

(Abnormal encoder performance

Abnormal encoder performance may be checked in the following method:

(1) Check encoder cables and make sure they comply with the above-introduced differential or collecting electrode wiring method;

(2) Check encoder voltage. The movement control card normally accepts +5V signals. In case a +12V or +24V encoder is selected, users must serial connect a 1K (+12V) resistor between the Phase A /B of the encoder and Phase A /B of the terminal panel;

(3) Inaccurate encoder counting. External cables to the encoder must be blocking double-twisted cables, and shall be tied free from those cables with strong disturbance such as strong electricity, specifically, they shall be separated for over 30～50MM.

Appendix A Typical wiring for motor driver

All the following wiring takes X axis as example.
(Stepping motor driver common anode wiring

[image: image26.png]e

B2 »
=4l
+

13

PO

DR

cox

Sy

saR

&

i

(Stepping motor driver differential wiring

[image: image27.png]HEE

B2 »
=4l
+

FT N

&

U+ B
=
PU-|3x | O
i2
DR+ %&
.
2l || & e

(Yaskawa servo driver wiring

[image: image28.png]coer

/5-08

ALER:

g

(Panasonic A4 servo driver wiring

[image: image29.png]c¥-

1 28
cr
p1 |2 e 29
B |51 oo
% 2
. o
21
51| |/s-on
RN
5 |19 B o
9
L VL SV
bl I
E) a7
S
1
36

a1

saR

Appendix B Introduction on applicable library
To ensure users conveniently and quickly program high-quality application system through the movement control card, our company, based on years of frontline development experiences, has sealed basic library functions and generated applicable function library.

An applicable function library contains two parts, i.e., management tools and library functions.
· Management tools for applicable library functions

[image: image30.png]<7 ADT8940 Nanage Tool X

system para

ads selected & Kads O vads O Zas O Was

ratin pitch

mation para
toorgin ¢ BOSHE & positive] pang
direction & negative directio” negative step

100000

pulse per circle. start speed run speed add time
O I EQ
wounf B F
“ne Con T Zphase
. rain sanat —
 wihirl & limit work |5 0 3
I softimtpositve: [1000 negatve: 1000 ety [0z
hand 5 20 3
usingads ¥ Xads ¥ Yads B Zais B Was || o
& . => & save para init board
[
aimpos logical pos actual pos motion speed limit orgin to orgin absolute
e | e
I~ Xaxis |5 r r r
I yais [10 re r I inp move inp arc
Fzes 55 |r | ¢ | _femoe | sor
P T e —
- B o- @) o otest 9

Management tools are used to set system parameters and movement parameters of all the axes, which is also the foundation to use applicable library functions. Users can click the Save button to save the setting they have made for each axis. The tools also include the one for adjusting applicable library functions, and users may verify reasonability of their setting through such management tools.

· List of application library functions
	Function category
	Function name
	Function description
	Page

	Initialization
	ADT8940A1_init_board
	Card initialization
	82

	Back to origin
	Home1
	Sing-axis back to origin
	83

	
	Home2
	2-axis back to origin
	83

	
	Home3
	3-axis back to origin
	83

	
	Home4
	4-axis back to origin
	83

	Multi-axis simultaneous motion
	Work_move1
	Sing-axis motion
	84

	
	Work_move2
	2-axis simultaneous motion
	84

	
	Work_move3
	3-axis simultaneous motion
	84

	
	Work_move4
	4-axis simultaneous motiont
	84

	Interpolation
	Work_inp2
	2-axis linear interpolation
	85

	
	Work_inp3
	3-axis linear interpolation
	85

	
	Work_inp4
	4-axis linear interpolation
	85

	
	Work_arc
	2-axis circular interpoaltion
	85

	Continuous motion
	Continue_move1
	Single-axis continuous motion
	85

	
	Continue_move2
	2-axis continuous motion
	86

	
	Continue_move3
	3-axis continuous motion
	86

	
	Continue_move4
	4-axis continuous motion
	86

	Manual motion
	Hand_move
	Manual motion
	86

	Free motion
	Free_move1
	Single-axis free motion
	86

	
	Free_move2
	2-axis free motion
	87

	
	Free_move3
	3-axis free motion
	87

	
	Free_move4
	4-axis free motion
	87

	Stop motion
	One_stop
	Stop single-axis motion
	87

	
	All_stop
	Stop all-axis motion
	88

	Get information
	Get_logical_pos
	Get logic position
	88

	
	Get_fact_pos
	Get real position
	88

	
	Get_move_speed
	Get motion speed
	88

	Switch amount
	Get_input
	Get status of single input
	88

	
	Set_output
	Output single point
	88

· Details on applicable library functions
1. ADT8940A1_init_board—Card initialization

Prototype: int ADT8940A1_init_board (void);

Function: read parameter files, initialize card, set range/ pulse mode/ stop mode and etc

Return: -3—No parameter files (opening management tools can automatically create them; -2—PCI slot error; -1—No service installed ; 0—No card inserted; 1—Successful initialization.

2. Home1—Sing-axis back to origin

Prototype: int home1(int axis,FUNCTION pfn);

Function: Designated axis to go back to 0 direction and 0 speed to search origin signals following the origin signal type specified in management tools; in case the signal type is just origin, stop0 signals are used, while stop1 signals are for the encoder using Z phase.

Parameters: axis— axis number; pfn— indicator function, used to transfer the control right so as to ensure to respond to external information during drive, such as to get position and speed and respond to stop.

Return: -2—Fail to detect origin signals; -1—Movement involved with prohibited axis; 0—External stop; 1—Success.

3. Home2—2 axis back to origin

Prototype: int home2(int axis1,int axis2,FUNCTION pfn)；

Function: Similar to home1

Parameters: axis1, axis2— axis numbers; pfn— indicator function

Return: Same as that for home1

4. Home3—3 axis back to origin

Prototype: int home3(int axis1,int axis2,int axis3,FUNCTION pfn);

Function: Similar to home1

Parameters: axis1, axis2, axsi3— axis numbers; pfn— indicator function

Return: Same as that for home1

5. Home4—4-axis back to origin

Prototype: int home4 (FUNCTION pfn);

Function: Four axes to individually follow the specified origin type to go back to 0 direction and 0 speed to search for origin signals

Parameters: pfn—indicator function

Return: Same as that for home1

6. Work_move1—Single-axis movement

Prototype: int work_move1 (int axis,float d,int oppmode,int speedmode, FUNCTION pfn);

Function: Designated axis to move to targeted position in the specified mode

Parameters: axis— axis number; d— movement distance; pfn—indicator function

Oppmode—0: Relative movement (referring to the current point); 1: Absolute movement (referring to origin)

Speedmode—0: Processing speed; 1: Movement speed

Return: -3—Limit signal stop; -2—Soft limit stop; -1—Movement involved with prohibited axis; 0— External stop; 1—Success

7. Work_move2—2-axis simultaneous movement

Prototype: int work_move2 (int axis1,float d1,int axis2,float d2,int oppmode,int speedmode,FUNCTION pfn);

Function: Designated axis to move to targeted position following the specified mode

Parameters: axis1, axis2—axis numbers; d1, d2—movement distances; pfn—indicator function; oppmode—movement mode; speedmode—speed mode

Return: Same as that for work_move1

8. Work_move3—3-axis simultaneous movement

Prototype: int work_move3 (int axis1,float d1,int axis2,float d2,int axis3,float d3,int oppmode,int speedmode,FUNCTION pfn);

Function: Designated axis to move to targeted position following the specified mode

Parameters: axis1, axis2, axis3— axis numbers; d1, d2, d3— movement distances; pfn— indicator function; oppmode— movement mode; speedmode— speed mode

Return: Same as that for work_move1

9. Work_move4—4-axis simultaneous movement

Prototype: int work_move4 (float d1,,float d2,float d3,float d4,int oppmode,int speedmode,FUNCTION pfn);

Function: All the four axes to move to targeted position following the specified mode

Parameters: d1, d2, d3, d4— movement distances of respectively X, Y, Z, W axis; pfn— indicator function; oppmode— movement mode; speedmode— speed mode

Return: Same as that for work_move1

10. Work_inp2—2-axis linear interpolation
Prototype: int work_inp2 (int axis1,float d1,int axis2,float d2,int oppmode,int speedmode,FUNCTION pfn);

Function: Designated axis1 and axis2 move to targeted position in linear interpolation mode

Parameters: Same as that for 2-axis simultaneous movement

Return: Same as that for work_move1

11. Work_inp3—3-axis linear interpolation
Prototype: int work_inp3 (int axis1,float d1,int axis2,float d2,int axis3,float d3,int oppmode,int speedmode,FUNCTION pfn);

Function: Designated axis1, axis 2 and axis3 move to targeted position in linear interpolation mode

Parameters: Same as that for 3-axis simultaneous movement

Return: Same as that for work_move1

12. Work_inp4—4-axis linear interpolation
Prototype: int work_inp4(float d1,float d2,float d3,float d4,int oppmode,int speedmode,FUNCTION pfn)；

Function: All the four axes move to targeted position in linear interpolation mode

Parameters: Same as that for 4-axis simultaneous movement

Return: Same as that for work_move1

13. Work_arc—2-axis circular interpoaltion
Prototype: int work_arc (int axis1,int axis2,float cood[],int speedmode,FUNCTION pfn)

Function: Any 2 axis to make circular interpoaltion following the specified speed mode

Parameters: axis1, axis2—axis number; cood[]—coordinates of 3 points at an arc, including 6 factors

Return: -4—The 3 points fail to form an arc; other Returns are same as that for work_move1

14. Continue_move1—Single-axis continuous motion
Prototype: int continue_move1(int axis,int dir, int speedmode,FUNCTION pfn)；

Function: Single axis continuously moves until limit signal or external stop

Parameters: axis— axis number; dir— direction (0: positive direction; 1: negative direction); pfn—indicator function

Return: Same as that for work_move1

15. Continue_move2—2-axis continuous motion
Prototype: int continue_move2 (int axis1,int dir1,int axis2,int dir2, int speedmode,FUNCTION pfn);

Function: 2 axes continuously move until limit signal or external stop

Parameters: axis1, axis2— axis numbers; dir1, dir2— directions (0: positive direction; 1: negative direction); pfn—indicator function

Return: Same as that for work_move1

16. Continue_move3—3-axis continuous motion
Prototype: int continue_move3 (int axis1,int dir1,int axis2,int dir2,int axis3,int dir3, int speedmode,FUNCTION pfn);

Function: 3 axes continuously move until limit signal or external stop

Parameters: axis1, axis2, axis3— axis numbers; dir1, dir2, dir3— directions (0: positive direction; 1: negative direction); pfn—indicator function

Return: Same as that for work_move1

17. Continue_move4—4-axis continuous motion
Prototype: int continue_move4(int dir1,int dir2,int dir3,int dir4, int speedmode,FUNCTION pfn)；

Function: 4 axes continuously move until limit signal or external stop

Parameters: dir1, dir2, dir3, dir4— directions (0: positive direction; 1: negative direction); pfn—indicator function

Return: Same as that for work_move1

18. Hand_move—Manual function

Prototype: int hand_move (int axis,int dir,FUNCTION pfn);

Function: Designated axis continuously moves following the manual speed and specified direction until limit signal or external stop

Parameters: axis－axis number; dir— directions (0: positive direction; 1: negative direction); pfn—indicator function

Return: -3—Limit signal stop; -1—Movement involved with prohibited axis; 0—External stop

19. Free_move1—Single-axis free motion
Prototype: int free_move1 (int axis,float d,float startv,float speed,float addtime,int oppmode,FUNCTION pfn)

Function: Designated axis moves to targeted position following the specified speed and direction

Parameters: axis— axis number; d— targeted position; startv— starting speed; speed— drive speed; addtime— acceleration time; oppmode—movement mode (0: Relative movement; 1: Absolute movement); pfn—indicator function

Return: Same as that for work_move1

20. Free_move2—2-axis free motion
Prototype: int free_move2(int axis1,float d1,float startv1,float speed1,float addtime1,int axis2,float d2,float startv2,float speed2,float addtime2,int oppmode,FUNCTION pfn)；

Function: Designated axis moves to targeted position following the specified speed and movement mode

Parameters: Similar to that for free_move1

Return: Same as that for work_move1

21. Free_move3—3-axis free motion
Prototype: int free_move3 (int axis1,float d1,float startv1,float speed1,float addtime1,int axis2,float d2,float startv2,float speed2,float adtime2,int axis3,float startv3,float speed3,float addtime3,int oppmode,FUNCTION pfn);

Function: Designated axis moves to targeted position following the specified speed and movement mode

Parameters: Similar to that for free_move1

Return: Same as that for work_move1

22. Free_move4—4-axis free motion
Prototype: int free_move4 (float d1,float startv1,float speed1,float addtime1,float d2,float startv2,float speed2,float addtime2,float startv3,float speed3,float addtime3,float startv4,float speed4,float addtime4,int oppmode,FUNCTION pfn);

Function: All the four axis moves to targeted position following the specified speed and movement mode

Parameters: Similar to that for free_move1

Return: Same as that for work_move1

23. One_stop—Stop single-axis motion
Prototype: int one_stop (int axis,int mode);

Function: Stop motion of designated axis in designate mode

Parameters: axis— axis number; mode—stop mode (0: sudden stop; 1: decelerating stop)

24. All_stop—Stop all-axis motion
Prototype: int all_stop(int mode)；

Function: Stop motion of all the axis in designate mode

Parameters: mode— stop mode (0: sudden stop; 1: decelerating stop)

25. Get_logical_pos—Get logical position

Prototype: float get_logical_pos (int axis,int mode);

Function: Get logic position of designated axis in designated mode

Parameters: axis— axis number;
mode— position mode (0: distance mode; 1: pulse mode);

Return: logic position

26. Get_fact_pos—Get actual position

Prototype: float get_fact_pos(int axis,int mode)；

Function: Get actual position of designated axis in designated mode

Parameters: axis— axis number; mode— position mode (0: distance mode; 1: pulse mode);

Return: real position

27. Get_move_speed—Get motion speed

Prototype: float get_move_speed (int axis,int mode);

Function: Get motion speed of designated axis in designated mode

Parameters: axis— axis number; mode— position mode (0: distance mode; 1: pulse mode);

Return: motion speed

28. Get_input—Get status of single input
Prototype: int get_input (int number);

Function: Get status of individual input point

Parameters: number—Input point

Return: 0—low level; 1—high level; -1—error

29. Set_output—Output single point

Prototype: int set_output (int number,int value);

Function: Set status of designated output points

Parameters: number— Output number; value—0: low; 1: high

Return: 0—Correct; 1: Wrong

All movement control functions return immedietly; once a drive command is made, the movement process will be controlled by the movement control card until completion; then the host computer software of users can real-time monitor the whole movement process or force to stop the process.

Remark: Axis during motion are not allowed to send new drive commands to motion axis, otherwise the previous drive will be given up so as to execute the new drive.

Stepping motor driver

Servo motor driver

Stepping motor driver

��

Encoder.

Wiring map for an open-collect output-type encoder. For +5V power supply, R is not required; for +12V power supply, R= 1KΩ; and for +24V power supply, R= 2KΩ

Wiring map for a differential-driver output-type encoder

Encoder.

Internal circuit

VEXT is anode of external power supply

EXT_GND is cathode of external power supply

K1 is for approach switch or photoelectric switch, and K2 is for normal mechanical switch

or

12-24V power supply

For inductive loading such as relay, add continuous dioxide at the two ends of the loading, as shown in J4

Pulse/ direction is set on the positive logical level

Pulse output type

Independent 2-pulse

Drive direction

Output signal waveform

PU/CW signal

DR/CCW signal

+Direction

-Direction

Low level

Low level

Low level

Hi level

+Direction

-Direction

1-pulse 1-direction

X axis

Y axis

Z axis

W axis

1-pulse method

Negative drive output

Positive drive output

Hi level

Low level

Low level

Low level

Negative drive output

Positive drive output

DR/CCW signal

PU/CW signal

Output signal waveform

Drive direction

Independent 2-pulse method

Pulse output method

Pulse/ direction are both of positive logic setting

Positive logic pulse

Negative logic pulse

Positive direction logic pulse

Negative direction logic pulse

Movement control card

P1 terminal

Control side

Driver

Power supply Motor

Motor

Motor

Power supply Motor

Driver

Control side

P1 terminal

Movement control card

Driver

P1 terminal

Movement control card

P2 terminal

P2 terminal

Driver

P1 terminal

Movement control card

C phase

C phase

or

PAGE
37

_1247550773

_1247729326

_1247729386

_1247729243

_1227516653

_1247496023

_1247496460

_1229493384

_1247489952

_1226909147

_1226911083

_1218951552

_1226824564

